skimage.io.sift 源代码
import numpy as np
__all__ = ['load_sift', 'load_surf']
def _sift_read(filelike, mode='SIFT'):
"""Read SIFT or SURF features from externally generated file.
This routine reads SIFT or SURF files generated by binary utilities from
http://people.cs.ubc.ca/~lowe/keypoints/ and
http://www.vision.ee.ethz.ch/~surf/.
This routine *does not* generate SIFT/SURF features from an image. These
algorithms are patent encumbered. Please use :obj:`skimage.feature.CENSURE`
instead.
Parameters
----------
filelike : string or open file
Input file generated by the feature detectors from
http://people.cs.ubc.ca/~lowe/keypoints/ or
http://www.vision.ee.ethz.ch/~surf/ .
mode : {'SIFT', 'SURF'}, optional
Kind of descriptor used to generate `filelike`.
Returns
-------
data : record array with fields
- row: int
row position of feature
- column: int
column position of feature
- scale: float
feature scale
- orientation: float
feature orientation
- data: array
feature values
"""
if isinstance(filelike, str):
f = open(filelike)
filelike_is_str = True
else:
f = filelike
filelike_is_str = False
if mode == 'SIFT':
nr_features, feature_len = map(int, f.readline().split())
datatype = np.dtype(
[
('row', float),
('column', float),
('scale', float),
('orientation', float),
('data', (float, feature_len)),
]
)
else:
mode = 'SURF'
feature_len = int(f.readline()) - 1
nr_features = int(f.readline())
datatype = np.dtype(
[
('column', float),
('row', float),
('second_moment', (float, 3)),
('sign', float),
('data', (float, feature_len)),
]
)
data = np.fromfile(f, sep=' ')
if data.size != nr_features * datatype.itemsize / np.dtype(float).itemsize:
raise OSError(f'Invalid {mode} feature file.')
# If `filelike` is passed to the function as filename - close the file
if filelike_is_str:
f.close()
return data.view(datatype)
[文档]
def load_sift(f):
return _sift_read(f, mode='SIFT')
[文档]
def load_surf(f):
return _sift_read(f, mode='SURF')
load_sift.__doc__ = _sift_read.__doc__
load_surf.__doc__ = _sift_read.__doc__