skimage.restoration._rolling_ball 源代码

import numpy as np

from .._shared.utils import _supported_float_type
from ._rolling_ball_cy import apply_kernel, apply_kernel_nan


[文档] def rolling_ball(image, *, radius=100, kernel=None, nansafe=False, num_threads=None): """Estimate background intensity by rolling/translating a kernel. This rolling ball algorithm estimates background intensity for a ndimage in case of uneven exposure. It is a generalization of the frequently used rolling ball algorithm [1]_. Parameters ---------- image : ndarray The image to be filtered. radius : int, optional Radius of a ball-shaped kernel to be rolled/translated in the image. Used if ``kernel = None``. kernel : ndarray, optional The kernel to be rolled/translated in the image. It must have the same number of dimensions as ``image``. Kernel is filled with the intensity of the kernel at that position. nansafe: bool, optional If ``False`` (default) assumes that none of the values in ``image`` are ``np.nan``, and uses a faster implementation. num_threads: int, optional The maximum number of threads to use. If ``None`` use the OpenMP default value; typically equal to the maximum number of virtual cores. Note: This is an upper limit to the number of threads. The exact number is determined by the system's OpenMP library. Returns ------- background : ndarray The estimated background of the image. Notes ----- For the pixel that has its background intensity estimated (without loss of generality at ``center``) the rolling ball method centers ``kernel`` under it and raises the kernel until the surface touches the image umbra at some ``pos=(y,x)``. The background intensity is then estimated using the image intensity at that position (``image[pos]``) plus the difference of ``kernel[center] - kernel[pos]``. This algorithm assumes that dark pixels correspond to the background. If you have a bright background, invert the image before passing it to the function, e.g., using `utils.invert`. See the gallery example for details. This algorithm is sensitive to noise (in particular salt-and-pepper noise). If this is a problem in your image, you can apply mild gaussian smoothing before passing the image to this function. This algorithm's complexity is polynomial in the radius, with degree equal to the image dimensionality (a 2D image is N^2, a 3D image is N^3, etc.), so it can take a long time as the radius grows beyond 30 or so ([2]_, [3]_). It is an exact N-dimensional calculation; if all you need is an approximation, faster options to consider are top-hat filtering [4]_ or downscaling-then-upscaling to reduce the size of the input processed. References ---------- .. [1] Sternberg, Stanley R. "Biomedical image processing." Computer 1 (1983): 22-34. :DOI:`10.1109/MC.1983.1654163` .. [2] https://github.com/scikit-image/scikit-image/issues/5193 .. [3] https://github.com/scikit-image/scikit-image/issues/7423 .. [4] https://forum.image.sc/t/59267/7 Examples -------- >>> import numpy as np >>> from skimage import data >>> from skimage.restoration import rolling_ball >>> image = data.coins() >>> background = rolling_ball(data.coins()) >>> filtered_image = image - background >>> import numpy as np >>> from skimage import data >>> from skimage.restoration import rolling_ball, ellipsoid_kernel >>> image = data.coins() >>> kernel = ellipsoid_kernel((101, 101), 75) >>> background = rolling_ball(data.coins(), kernel=kernel) >>> filtered_image = image - background """ image = np.asarray(image) float_type = _supported_float_type(image.dtype) img = image.astype(float_type, copy=False) if num_threads is None: num_threads = 0 if kernel is None: kernel = ball_kernel(radius, image.ndim) kernel = kernel.astype(float_type) kernel_shape = np.asarray(kernel.shape) kernel_center = kernel_shape // 2 center_intensity = kernel[tuple(kernel_center)] intensity_difference = center_intensity - kernel intensity_difference[kernel == np.inf] = np.inf intensity_difference = intensity_difference.astype(img.dtype) intensity_difference = intensity_difference.reshape(-1) img = np.pad( img, kernel_center[:, np.newaxis], constant_values=np.inf, mode="constant" ) func = apply_kernel_nan if nansafe else apply_kernel background = func( img.reshape(-1), intensity_difference, np.zeros_like(image, dtype=img.dtype).reshape(-1), np.array(image.shape, dtype=np.intp), np.array(img.shape, dtype=np.intp), kernel_shape.astype(np.intp), num_threads, ) background = background.astype(image.dtype, copy=False) return background
[文档] def ball_kernel(radius, ndim): """Create a ball kernel for restoration.rolling_ball. Parameters ---------- radius : int Radius of the ball. ndim : int Number of dimensions of the ball. ``ndim`` should match the dimensionality of the image the kernel will be applied to. Returns ------- kernel : ndarray The kernel containing the surface intensity of the top half of the ellipsoid. See Also -------- rolling_ball """ kernel_coords = np.stack( np.meshgrid( *[np.arange(-x, x + 1) for x in [np.ceil(radius)] * ndim], indexing='ij' ), axis=-1, ) sum_of_squares = np.sum(kernel_coords**2, axis=-1) distance_from_center = np.sqrt(sum_of_squares) kernel = np.sqrt(np.clip(radius**2 - sum_of_squares, 0, None)) kernel[distance_from_center > radius] = np.inf return kernel
[文档] def ellipsoid_kernel(shape, intensity): """Create an ellipoid kernel for restoration.rolling_ball. Parameters ---------- shape : array-like Length of the principal axis of the ellipsoid (excluding the intensity axis). The kernel needs to have the same dimensionality as the image it will be applied to. intensity : int Length of the intensity axis of the ellipsoid. Returns ------- kernel : ndarray The kernel containing the surface intensity of the top half of the ellipsoid. See Also -------- rolling_ball """ shape = np.asarray(shape) semi_axis = np.clip(shape // 2, 1, None) kernel_coords = np.stack( np.meshgrid(*[np.arange(-x, x + 1) for x in semi_axis], indexing='ij'), axis=-1 ) intensity_scaling = 1 - np.sum((kernel_coords / semi_axis) ** 2, axis=-1) kernel = intensity * np.sqrt(np.clip(intensity_scaling, 0, None)) kernel[intensity_scaling < 0] = np.inf return kernel