skimage.restoration.unwrap 源代码

import numpy as np

from .._shared.utils import warn

from ._unwrap_1d import unwrap_1d
from ._unwrap_2d import unwrap_2d
from ._unwrap_3d import unwrap_3d


[文档] def unwrap_phase(image, wrap_around=False, rng=None): '''Recover the original from a wrapped phase image. From an image wrapped to lie in the interval [-pi, pi), recover the original, unwrapped image. Parameters ---------- image : (M[, N[, P]]) ndarray or masked array of floats The values should be in the range [-pi, pi). If a masked array is provided, the masked entries will not be changed, and their values will not be used to guide the unwrapping of neighboring, unmasked values. Masked 1D arrays are not allowed, and will raise a `ValueError`. wrap_around : bool or sequence of bool, optional When an element of the sequence is `True`, the unwrapping process will regard the edges along the corresponding axis of the image to be connected and use this connectivity to guide the phase unwrapping process. If only a single boolean is given, it will apply to all axes. Wrap around is not supported for 1D arrays. rng : {`numpy.random.Generator`, int}, optional Pseudo-random number generator. By default, a PCG64 generator is used (see :func:`numpy.random.default_rng`). If `rng` is an int, it is used to seed the generator. Unwrapping relies on a random initialization. This sets the PRNG to use to achieve deterministic behavior. Returns ------- image_unwrapped : array_like, double Unwrapped image of the same shape as the input. If the input `image` was a masked array, the mask will be preserved. Raises ------ ValueError If called with a masked 1D array or called with a 1D array and ``wrap_around=True``. Examples -------- >>> c0, c1 = np.ogrid[-1:1:128j, -1:1:128j] >>> image = 12 * np.pi * np.exp(-(c0**2 + c1**2)) >>> image_wrapped = np.angle(np.exp(1j * image)) >>> image_unwrapped = unwrap_phase(image_wrapped) >>> np.std(image_unwrapped - image) < 1e-6 # A constant offset is normal True References ---------- .. [1] Miguel Arevallilo Herraez, David R. Burton, Michael J. Lalor, and Munther A. Gdeisat, "Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path", Journal Applied Optics, Vol. 41, No. 35 (2002) 7437, .. [2] Abdul-Rahman, H., Gdeisat, M., Burton, D., & Lalor, M., "Fast three-dimensional phase-unwrapping algorithm based on sorting by reliability following a non-continuous path. In W. Osten, C. Gorecki, & E. L. Novak (Eds.), Optical Metrology (2005) 32--40, International Society for Optics and Photonics. ''' if image.ndim not in (1, 2, 3): raise ValueError('Image must be 1, 2, or 3 dimensional') if isinstance(wrap_around, bool): wrap_around = [wrap_around] * image.ndim elif hasattr(wrap_around, '__getitem__') and not isinstance(wrap_around, str): if len(wrap_around) != image.ndim: raise ValueError( 'Length of `wrap_around` must equal the ' 'dimensionality of image' ) wrap_around = [bool(wa) for wa in wrap_around] else: raise ValueError( '`wrap_around` must be a bool or a sequence with ' 'length equal to the dimensionality of image' ) if image.ndim == 1: if np.ma.isMaskedArray(image): raise ValueError('1D masked images cannot be unwrapped') if wrap_around[0]: raise ValueError('`wrap_around` is not supported for 1D images') if image.ndim in (2, 3) and 1 in image.shape: warn( 'Image has a length 1 dimension. Consider using an ' 'array of lower dimensionality to use a more efficient ' 'algorithm' ) if np.ma.isMaskedArray(image): mask = np.require(np.ma.getmaskarray(image), np.uint8, ['C']) else: mask = np.zeros_like(image, dtype=np.uint8, order='C') image_not_masked = np.asarray(np.ma.getdata(image), dtype=np.float64, order='C') image_unwrapped = np.empty_like(image, dtype=np.float64, order='C', subok=False) if image.ndim == 1: unwrap_1d(image_not_masked, image_unwrapped) elif image.ndim == 2: unwrap_2d(image_not_masked, mask, image_unwrapped, wrap_around, rng) elif image.ndim == 3: unwrap_3d(image_not_masked, mask, image_unwrapped, wrap_around, rng) if np.ma.isMaskedArray(image): return np.ma.array(image_unwrapped, mask=mask, fill_value=image.fill_value) else: return image_unwrapped