.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/edges/plot_polygon.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_edges_plot_polygon.py: ================================== Approximate and subdivide polygons ================================== This example shows how to approximate (Douglas-Peucker algorithm) and subdivide (B-Splines) polygonal chains. .. GENERATED FROM PYTHON SOURCE LINES 10-83 .. image-sg:: /auto_examples/edges/images/sphx_glr_plot_polygon_001.png :alt: plot polygon :srcset: /auto_examples/edges/images/sphx_glr_plot_polygon_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none Number of coordinates: 22 704 26 Number of coordinates: 1173 32 9 Number of coordinates: 701 21 5 | .. code-block:: Python import numpy as np import matplotlib.pyplot as plt from skimage.draw import ellipse from skimage.measure import find_contours, approximate_polygon, subdivide_polygon hand = np.array( [ [1.64516129, 1.16145833], [1.64516129, 1.59375], [1.35080645, 1.921875], [1.375, 2.18229167], [1.68548387, 1.9375], [1.60887097, 2.55208333], [1.68548387, 2.69791667], [1.76209677, 2.56770833], [1.83064516, 1.97395833], [1.89516129, 2.75], [1.9516129, 2.84895833], [2.01209677, 2.76041667], [1.99193548, 1.99479167], [2.11290323, 2.63020833], [2.2016129, 2.734375], [2.25403226, 2.60416667], [2.14919355, 1.953125], [2.30645161, 2.36979167], [2.39112903, 2.36979167], [2.41532258, 2.1875], [2.1733871, 1.703125], [2.07782258, 1.16666667], ] ) # subdivide polygon using 2nd degree B-Splines new_hand = hand.copy() for _ in range(5): new_hand = subdivide_polygon(new_hand, degree=2, preserve_ends=True) # approximate subdivided polygon with Douglas-Peucker algorithm appr_hand = approximate_polygon(new_hand, tolerance=0.02) print("Number of coordinates:", len(hand), len(new_hand), len(appr_hand)) fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(9, 4)) ax1.plot(hand[:, 0], hand[:, 1]) ax1.plot(new_hand[:, 0], new_hand[:, 1]) ax1.plot(appr_hand[:, 0], appr_hand[:, 1]) # create two ellipses in image img = np.zeros((800, 800), 'int32') rr, cc = ellipse(250, 250, 180, 230, img.shape) img[rr, cc] = 1 rr, cc = ellipse(600, 600, 150, 90, img.shape) img[rr, cc] = 1 plt.gray() ax2.imshow(img) # approximate / simplify coordinates of the two ellipses for contour in find_contours(img, 0): coords = approximate_polygon(contour, tolerance=2.5) ax2.plot(coords[:, 1], coords[:, 0], '-r', linewidth=2) coords2 = approximate_polygon(contour, tolerance=39.5) ax2.plot(coords2[:, 1], coords2[:, 0], '-g', linewidth=2) print("Number of coordinates:", len(contour), len(coords), len(coords2)) ax2.axis((0, 800, 0, 800)) plt.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.103 seconds) .. _sphx_glr_download_auto_examples_edges_plot_polygon.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/scikit-image/scikit-image/v0.24.0?filepath=notebooks/auto_examples/edges/plot_polygon.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_polygon.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_polygon.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_polygon.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_