.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/features_detection/plot_fisher_vector.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_features_detection_plot_fisher_vector.py: =============================== Fisher vector feature encoding =============================== A Fisher vector is an image feature encoding and quantization technique that can be seen as a soft or probabilistic version of the popular bag-of-visual-words or VLAD algorithms. Images are modelled using a visual vocabulary which is estimated using a K-mode Gaussian mixture model trained on low-level image features such as SIFT or ORB descriptors. The Fisher vector itself is a concatenation of the gradients of the Gaussian mixture model (GMM) with respect to its parameters - mixture weights, means, and covariance matrices. In this example, we compute Fisher vectors for the digits dataset in scikit-learn, and train a classifier on these representations. Please note that scikit-learn is required to run this example. .. GENERATED FROM PYTHON SOURCE LINES 20-78 .. image-sg:: /auto_examples/features_detection/images/sphx_glr_plot_fisher_vector_001.png :alt: plot fisher vector :srcset: /auto_examples/features_detection/images/sphx_glr_plot_fisher_vector_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none precision recall f1-score support 0 0.81 0.86 0.84 44 1 0.78 0.70 0.74 44 2 0.59 0.64 0.61 47 3 0.65 0.66 0.65 47 4 0.60 0.73 0.66 45 5 0.49 0.53 0.51 47 6 0.74 0.43 0.54 54 7 0.65 0.64 0.65 50 8 0.56 0.57 0.57 40 9 0.35 0.41 0.38 32 accuracy 0.62 450 macro avg 0.62 0.62 0.61 450 weighted avg 0.63 0.62 0.62 450 | .. code-block:: Python from matplotlib import pyplot as plt import numpy as np from sklearn.datasets import load_digits from sklearn.metrics import classification_report, ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from sklearn.svm import LinearSVC from skimage.transform import resize from skimage.feature import fisher_vector, ORB, learn_gmm data = load_digits() images = data.images targets = data.target # Resize images so that ORB detects interest points for all images images = np.array([resize(image, (80, 80)) for image in images]) # Compute ORB descriptors for each image descriptors = [] for image in images: detector_extractor = ORB(n_keypoints=5, harris_k=0.01) detector_extractor.detect_and_extract(image) descriptors.append(detector_extractor.descriptors.astype('float32')) # Split the data into training and testing subsets train_descriptors, test_descriptors, train_targets, test_targets = train_test_split( descriptors, targets ) # Train a K-mode GMM k = 16 gmm = learn_gmm(train_descriptors, n_modes=k) # Compute the Fisher vectors training_fvs = np.array( [fisher_vector(descriptor_mat, gmm) for descriptor_mat in train_descriptors] ) testing_fvs = np.array( [fisher_vector(descriptor_mat, gmm) for descriptor_mat in test_descriptors] ) svm = LinearSVC().fit(training_fvs, train_targets) predictions = svm.predict(testing_fvs) print(classification_report(test_targets, predictions)) ConfusionMatrixDisplay.from_estimator( svm, testing_fvs, test_targets, cmap=plt.cm.Blues, ) plt.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 30.792 seconds) .. _sphx_glr_download_auto_examples_features_detection_plot_fisher_vector.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/scikit-image/scikit-image/v0.24.0?filepath=notebooks/auto_examples/features_detection/plot_fisher_vector.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_fisher_vector.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_fisher_vector.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_fisher_vector.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_