.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/bicluster/plot_spectral_coclustering.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_bicluster_plot_spectral_coclustering.py: ============================================== 谱聚类算法演示 ============================================== 此示例演示如何生成数据集并使用谱聚类算法进行双聚类。 数据集使用 ``make_biclusters`` 函数生成,该函数创建一个包含小值的矩阵,并在其中植入包含大值的双聚类。然后对行和列进行洗牌,并传递给谱聚类算法。重新排列洗牌后的矩阵以使双聚类连续,展示了算法如何准确地找到双聚类。 .. GENERATED FROM PYTHON SOURCE LINES 11-51 .. rst-class:: sphx-glr-horizontal * .. image-sg:: /auto_examples/bicluster/images/sphx_glr_plot_spectral_coclustering_001.png :alt: Original dataset :srcset: /auto_examples/bicluster/images/sphx_glr_plot_spectral_coclustering_001.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/bicluster/images/sphx_glr_plot_spectral_coclustering_002.png :alt: Shuffled dataset :srcset: /auto_examples/bicluster/images/sphx_glr_plot_spectral_coclustering_002.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/bicluster/images/sphx_glr_plot_spectral_coclustering_003.png :alt: After biclustering; rearranged to show biclusters :srcset: /auto_examples/bicluster/images/sphx_glr_plot_spectral_coclustering_003.png :class: sphx-glr-multi-img .. rst-class:: sphx-glr-script-out .. code-block:: none consensus score: 1.000 | .. code-block:: Python # 作者:scikit-learn开发者 # SPDX许可证标识:BSD-3-Clause import numpy as np from matplotlib import pyplot as plt from sklearn.cluster import SpectralCoclustering from sklearn.datasets import make_biclusters from sklearn.metrics import consensus_score data, rows, columns = make_biclusters( shape=(300, 300), n_clusters=5, noise=5, shuffle=False, random_state=0 ) plt.matshow(data, cmap=plt.cm.Blues) plt.title("Original dataset") # shuffle clusters rng = np.random.RandomState(0) row_idx = rng.permutation(data.shape[0]) col_idx = rng.permutation(data.shape[1]) data = data[row_idx][:, col_idx] plt.matshow(data, cmap=plt.cm.Blues) plt.title("Shuffled dataset") model = SpectralCoclustering(n_clusters=5, random_state=0) model.fit(data) score = consensus_score(model.biclusters_, (rows[:, row_idx], columns[:, col_idx])) print("consensus score: {:.3f}".format(score)) fit_data = data[np.argsort(model.row_labels_)] fit_data = fit_data[:, np.argsort(model.column_labels_)] plt.matshow(fit_data, cmap=plt.cm.Blues) plt.title("After biclustering; rearranged to show biclusters") plt.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.178 seconds) .. _sphx_glr_download_auto_examples_bicluster_plot_spectral_coclustering.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/main?urlpath=lab/tree/notebooks/auto_examples/bicluster/plot_spectral_coclustering.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_spectral_coclustering.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_spectral_coclustering.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_spectral_coclustering.zip ` .. include:: plot_spectral_coclustering.recommendations .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_