.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/ensemble/plot_gradient_boosting_regularization.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_ensemble_plot_gradient_boosting_regularization.py: =============================== 梯度提升正则化 ================================ 展示了不同正则化策略对梯度提升的影响。该示例取自 Hastie 等人 2009 [1]_。 使用的损失函数是二项偏差。通过缩减( ``learning_rate < 1.0`` )进行正则化可以显著提高性能。结合缩减,随机梯度提升( ``subsample < 1.0`` )可以通过袋装法减少方差,从而产生更准确的模型。没有缩减的子采样通常表现不佳。另一种减少方差的策略是通过子采样特征,类似于随机森林中的随机分裂(通过 ``max_features`` 参数)。 .. [1] T. Hastie, R. Tibshirani 和 J. Friedman, "统计学习要素 第2版", Springer, 2009. .. GENERATED FROM PYTHON SOURCE LINES 13-81 .. image-sg:: /auto_examples/ensemble/images/sphx_glr_plot_gradient_boosting_regularization_001.png :alt: plot gradient boosting regularization :srcset: /auto_examples/ensemble/images/sphx_glr_plot_gradient_boosting_regularization_001.png :class: sphx-glr-single-img .. code-block:: Python # 作者:scikit-learn 开发者 # SPDX-License-Identifier: BSD-3-Clause import matplotlib.pyplot as plt import numpy as np from sklearn import datasets, ensemble from sklearn.metrics import log_loss from sklearn.model_selection import train_test_split X, y = datasets.make_hastie_10_2(n_samples=4000, random_state=1) # 将标签从 {-1, 1} 映射到 {0, 1} labels, y = np.unique(y, return_inverse=True) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.8, random_state=0) original_params = { "n_estimators": 400, "max_leaf_nodes": 4, "max_depth": None, "random_state": 2, "min_samples_split": 5, } plt.figure() for label, color, setting in [ ("No shrinkage", "orange", {"learning_rate": 1.0, "subsample": 1.0}), ("learning_rate=0.2", "turquoise", {"learning_rate": 0.2, "subsample": 1.0}), ("subsample=0.5", "blue", {"learning_rate": 1.0, "subsample": 0.5}), ( "learning_rate=0.2, subsample=0.5", "gray", {"learning_rate": 0.2, "subsample": 0.5}, ), ( "learning_rate=0.2, max_features=2", "magenta", {"learning_rate": 0.2, "max_features": 2}, ), ]: params = dict(original_params) params.update(setting) clf = ensemble.GradientBoostingClassifier(**params) clf.fit(X_train, y_train) # 计算测试集偏差 test_deviance = np.zeros((params["n_estimators"],), dtype=np.float64) for i, y_proba in enumerate(clf.staged_predict_proba(X_test)): test_deviance[i] = 2 * log_loss(y_test, y_proba[:, 1]) plt.plot( (np.arange(test_deviance.shape[0]) + 1)[::5], test_deviance[::5], "-", color=color, label=label, ) plt.legend(loc="upper right") plt.xlabel("Boosting Iterations") plt.ylabel("Test Set Deviance") plt.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 9.342 seconds) .. _sphx_glr_download_auto_examples_ensemble_plot_gradient_boosting_regularization.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/main?urlpath=lab/tree/notebooks/auto_examples/ensemble/plot_gradient_boosting_regularization.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_gradient_boosting_regularization.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_gradient_boosting_regularization.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_gradient_boosting_regularization.zip ` .. include:: plot_gradient_boosting_regularization.recommendations .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_