.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/linear_model/plot_theilsen.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end <sphx_glr_download_auto_examples_linear_model_plot_theilsen.py>` to download the full example code. or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_linear_model_plot_theilsen.py: ==================== Theil-Sen 回归 ==================== åœ¨ä¸€ä¸ªåˆæˆæ•°æ®é›†ä¸Šè®¡ç®— Theil-Sen 回归。 有关回归器的更多信æ¯ï¼Œè¯·å‚è§ :ref:`theil_sen_regression` 。 与 OLS(普通最å°äºŒä¹˜ï¼‰ä¼°è®¡é‡ç›¸æ¯”,Theil-Sen 估计é‡å¯¹å¼‚å¸¸å€¼å…·æœ‰é²æ£’性。在简å•线性回归的情况下,它的崩溃点约为 29.3%,这æ„味ç€å®ƒå¯ä»¥å®¹å¿é«˜è¾¾ 29.3% 的二维数æ®ä¸çš„ä»»æ„æŸåæ•°æ®ï¼ˆå¼‚常值)。 模型的估计是通过计算所有å¯èƒ½çš„ p ä¸ªåæ ·æœ¬ç‚¹ç»„åˆçš„æ–œçŽ‡å’Œæˆªè·æ¥å®Œæˆçš„ã€‚å¦‚æžœæ‹Ÿåˆæˆªè·ï¼Œp 必须大于或ç‰äºŽ n_features + 1。最终的斜率和截è·å®šä¹‰ä¸ºè¿™äº›æ–œçŽ‡å’Œæˆªè·çš„空间ä¸ä½æ•°ã€‚ 在æŸäº›æƒ…况下,Theil-Sen çš„è¡¨çŽ°ä¼˜äºŽåŒæ ·æ˜¯é²æ£’方法的 :ref:`RANSAC <ransac_regression>` 。这在下é¢çš„第二个示例ä¸å¾—到了说明,其ä¸ç›¸å¯¹äºŽ x 轴的异常值扰乱了 RANSAC。调整 RANSAC çš„ ``residual_threshold`` 傿•°å¯ä»¥è§£å†³è¿™ä¸ªé—®é¢˜ï¼Œä½†é€šå¸¸éœ€è¦å¯¹æ•°æ®å’Œå¼‚常值的性质有先验知识。 由于 Theil-Sen çš„è®¡ç®—å¤æ‚æ€§ï¼Œå»ºè®®ä»…åœ¨æ ·æœ¬æ•°é‡å’Œç‰¹å¾æ•°é‡è¾ƒå°‘çš„å°é—®é¢˜ä¸Šä½¿ç”¨å®ƒã€‚对于较大的问题, ``max_subpopulation`` 傿•°é™åˆ¶äº†æ‰€æœ‰å¯èƒ½çš„ p ä¸ªåæ ·æœ¬ç‚¹ç»„åˆçš„è§„æ¨¡åˆ°ä¸€ä¸ªéšæœºé€‰æ‹©çš„åé›†ï¼Œå› æ¤ä¹Ÿé™åˆ¶äº†è¿è¡Œæ—¶é—´ã€‚å› æ¤ï¼ŒTheil-Sen 适用于较大的问题,但代价是失去了一些数å¦ç‰¹æ€§ï¼Œå› ä¸ºå®ƒåœ¨éšæœºå集上工作。 .. GENERATED FROM PYTHON SOURCE LINES 18-37 .. code-block:: Python # 作者:scikit-learn å¼€å‘者 # SPDX-License-Identifier:BSD-3-Clause import time import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import LinearRegression, RANSACRegressor, TheilSenRegressor estimators = [ ("OLS", LinearRegression()), ("Theil-Sen", TheilSenRegressor(random_state=42)), ("RANSAC", RANSACRegressor(random_state=42)), ] colors = {"OLS": "turquoise", "Theil-Sen": "gold", "RANSAC": "lightgreen"} lw = 2 .. GENERATED FROM PYTHON SOURCE LINES 38-40 仅在 y æ–¹å‘上的异常值 -------------------------- .. GENERATED FROM PYTHON SOURCE LINES 40-73 .. code-block:: Python np.random.seed(0) n_samples = 200 # 线性模型 y = 3*x + N(2, 0.1**2) x = np.random.randn(n_samples) w = 3.0 c = 2.0 noise = 0.1 * np.random.randn(n_samples) y = w * x + c + noise # 10% outliers y[-20:] += -20 * x[-20:] X = x[:, np.newaxis] plt.scatter(x, y, color="indigo", marker="x", s=40) line_x = np.array([-3, 3]) for name, estimator in estimators: t0 = time.time() estimator.fit(X, y) elapsed_time = time.time() - t0 y_pred = estimator.predict(line_x.reshape(2, 1)) plt.plot( line_x, y_pred, color=colors[name], linewidth=lw, label="%s (fit time: %.2fs)" % (name, elapsed_time), ) plt.axis("tight") plt.legend(loc="upper left") _ = plt.title("Corrupt y") .. image-sg:: /auto_examples/linear_model/images/sphx_glr_plot_theilsen_001.png :alt: Corrupt y :srcset: /auto_examples/linear_model/images/sphx_glr_plot_theilsen_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 74-76 X æ–¹å‘上的异常值 ----------------- .. GENERATED FROM PYTHON SOURCE LINES 76-109 .. code-block:: Python np.random.seed(0) # 线性模型 y = 3*x + N(2, 0.1**2) x = np.random.randn(n_samples) noise = 0.1 * np.random.randn(n_samples) y = 3 * x + 2 + noise # 10% outliers x[-20:] = 9.9 y[-20:] += 22 X = x[:, np.newaxis] plt.figure() plt.scatter(x, y, color="indigo", marker="x", s=40) line_x = np.array([-3, 10]) for name, estimator in estimators: t0 = time.time() estimator.fit(X, y) elapsed_time = time.time() - t0 y_pred = estimator.predict(line_x.reshape(2, 1)) plt.plot( line_x, y_pred, color=colors[name], linewidth=lw, label="%s (fit time: %.2fs)" % (name, elapsed_time), ) plt.axis("tight") plt.legend(loc="upper left") plt.title("Corrupt x") plt.show() .. image-sg:: /auto_examples/linear_model/images/sphx_glr_plot_theilsen_002.png :alt: Corrupt x :srcset: /auto_examples/linear_model/images/sphx_glr_plot_theilsen_002.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.291 seconds) .. _sphx_glr_download_auto_examples_linear_model_plot_theilsen.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/main?urlpath=lab/tree/notebooks/auto_examples/linear_model/plot_theilsen.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_theilsen.ipynb <plot_theilsen.ipynb>` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_theilsen.py <plot_theilsen.py>` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_theilsen.zip <plot_theilsen.zip>` .. include:: plot_theilsen.recommendations .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_