.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/mixture/plot_gmm.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_mixture_plot_gmm.py: ================================= 高斯混合模型椭圆体 ================================= 绘制通过期望最大化( ``GaussianMixture`` 类)和变分推断(具有狄利克雷过程先验的 ``BayesianGaussianMixture`` 类模型)获得的两个高斯混合模型的置信椭圆体。 两个模型都可以使用五个组件来拟合数据。请注意,期望最大化模型将必然使用所有五个组件,而变分推断模型实际上只会使用所需的组件数量以获得良好的拟合。在这里我们可以看到,期望最大化模型会任意地分割一些组件,因为它试图拟合过多的组件,而狄利克雷过程模型会自动调整其状态数量。 这个例子没有展示出来,因为我们处于低维空间中,但狄利克雷过程模型的另一个优点是,即使每个簇的示例数量少于数据的维度,由于推断算法的正则化特性,它也可以有效地拟合完整的协方差矩阵。 .. GENERATED FROM PYTHON SOURCE LINES 13-81 .. image-sg:: /auto_examples/mixture/images/sphx_glr_plot_gmm_001.png :alt: Gaussian Mixture, Bayesian Gaussian Mixture with a Dirichlet process prior :srcset: /auto_examples/mixture/images/sphx_glr_plot_gmm_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none /app/scikit-learn-main-origin/sklearn/mixture/_base.py:251: ConvergenceWarning: Best performing initialization did not converge. Try different init parameters, or increase max_iter, tol, or check for degenerate data. | .. code-block:: Python import itertools import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np from scipy import linalg from sklearn import mixture color_iter = itertools.cycle(["navy", "c", "cornflowerblue", "gold", "darkorange"]) def plot_results(X, Y_, means, covariances, index, title): splot = plt.subplot(2, 1, 1 + index) for i, (mean, covar, color) in enumerate(zip(means, covariances, color_iter)): v, w = linalg.eigh(covar) v = 2.0 * np.sqrt(2.0) * np.sqrt(v) u = w[0] / linalg.norm(w[0]) # 由于动态规划不会使用它能访问的每个组件,除非它需要它们,我们不应该绘制冗余组件。 if not np.any(Y_ == i): continue plt.scatter(X[Y_ == i, 0], X[Y_ == i, 1], 0.8, color=color) # 绘制椭圆以显示高斯成分 angle = np.arctan(u[1] / u[0]) angle = 180.0 * angle / np.pi # convert to degrees ell = mpl.patches.Ellipse(mean, v[0], v[1], angle=180.0 + angle, color=color) ell.set_clip_box(splot.bbox) ell.set_alpha(0.5) splot.add_artist(ell) plt.xlim(-9.0, 5.0) plt.ylim(-3.0, 6.0) plt.xticks(()) plt.yticks(()) plt.title(title) # Number of samples per component # # n_samples = 500 # 生成随机样本,两个组成部分 np.random.seed(0) C = np.array([[0.0, -0.1], [1.7, 0.4]]) X = np.r_[ np.dot(np.random.randn(n_samples, 2), C), 0.7 * np.random.randn(n_samples, 2) + np.array([-6, 3]), ] # 使用五个成分通过EM拟合高斯混合模型 gmm = mixture.GaussianMixture(n_components=5, covariance_type="full").fit(X) plot_results(X, gmm.predict(X), gmm.means_, gmm.covariances_, 0, "Gaussian Mixture") # 使用五个成分拟合狄利克雷过程高斯混合模型 dpgmm = mixture.BayesianGaussianMixture(n_components=5, covariance_type="full").fit(X) plot_results( X, dpgmm.predict(X), dpgmm.means_, dpgmm.covariances_, 1, "Bayesian Gaussian Mixture with a Dirichlet process prior", ) plt.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.091 seconds) .. _sphx_glr_download_auto_examples_mixture_plot_gmm.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/main?urlpath=lab/tree/notebooks/auto_examples/mixture/plot_gmm.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_gmm.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_gmm.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_gmm.zip ` .. include:: plot_gmm.recommendations .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_