sktime.regression.deep_learning.resnet 源代码

"""Residual Network (ResNet) for regression."""

__author__ = ["James-Large", "Withington"]

from copy import deepcopy

from sklearn.utils import check_random_state

from sktime.networks.resnet import ResNetNetwork
from sktime.regression.deep_learning.base import BaseDeepRegressor
from sktime.utils.dependencies import _check_dl_dependencies


[文档]class ResNetRegressor(BaseDeepRegressor): """Residual Neural Network Regressor adopted from [1]. Parameters ---------- n_epochs : int, default = 1500 the number of epochs to train the model batch_size : int, default = 16 the number of samples per gradient update. random_state : int or None, default=None Seed for random number generation. verbose : boolean, default = False whether to output extra information loss : string, default="mean_squared_error" fit parameter for the keras model optimizer : keras.optimizer, default=keras.optimizers.Adam(), metrics : list of strings, default=["mean_squared_error"], activation : string or a tf callable, default="linear" Activation function used in the output linear layer. List of available activation functions: https://keras.io/api/layers/activations/ use_bias : boolean, default = True whether the layer uses a bias vector. optimizer : keras.optimizers object, default = Adam(lr=0.01) specify the optimizer and the learning rate to be used. Notes ----- Adapted from the implementation from source code https://github.com/hfawaz/dl-4-tsc/blob/master/classifiers/resnet.py References ---------- .. [1] Wang et. al, Time series classification from scratch with deep neural networks: A strong baseline, International joint conference on neural networks (IJCNN), 2017. Examples -------- >>> from sktime.regression.deep_learning.resnet import ResNetRegressor >>> from sktime.datasets import load_unit_test >>> X_train, y_train = load_unit_test(split="train") >>> clf = ResNetRegressor(n_epochs=20, batch_size=4) # doctest: +SKIP >>> clf.fit(X_train, Y_train) # doctest: +SKIP ResNetRegressor(...) """ _tags = { # packaging info # -------------- "authors": ["James-Large", "Withington"], "maintainers": ["Withington"], "python_dependencies": "tensorflow", # estimator type handled by parent class } def __init__( self, n_epochs=1500, callbacks=None, verbose=False, loss="mean_squared_error", metrics=None, batch_size=16, random_state=None, activation="linear", use_bias=True, optimizer=None, ): _check_dl_dependencies(severity="error") self.n_epochs = n_epochs self.callbacks = callbacks self.verbose = verbose self.loss = loss self.metrics = metrics self.batch_size = batch_size self.random_state = random_state self.activation = activation self.use_bias = use_bias self.optimizer = optimizer super().__init__() self.history = None self._network = ResNetNetwork(random_state=random_state)
[文档] def build_model(self, input_shape, **kwargs): """Construct a compiled, un-trained, keras model that is ready for training. In sktime, time series are stored in numpy arrays of shape (d,m), where d is the number of dimensions, m is the series length. Keras/tensorflow assume data is in shape (m,d). This method also assumes (m,d). Transpose should happen in fit. Parameters ---------- input_shape : tuple The shape of the data fed into the input layer, should be (m,d) Returns ------- output : a compiled Keras Model """ import tensorflow as tf from tensorflow import keras tf.random.set_seed(self.random_state) self.optimizer_ = ( keras.optimizers.Adam(learning_rate=0.01) if self.optimizer is None else self.optimizer ) if self.metrics is None: metrics = [ "mean_squared_error", ] else: metrics = self.metrics input_layer, output_layer = self._network.build_network(input_shape, **kwargs) output_layer = keras.layers.Dense( units=1, activation=self.activation, use_bias=self.use_bias )(output_layer) model = keras.models.Model(inputs=input_layer, outputs=output_layer) model.compile( loss=self.loss, optimizer=self.optimizer_, metrics=metrics, ) return model
def _fit(self, X, y): """Fit the regressor on the training set (X, y). Parameters ---------- X : np.ndarray of shape = (n_instances (n), n_dimensions (d), series_length (m)) The training input samples. y : np.ndarray of shape n The training data class labels. Returns ------- self : object """ # Transpose to conform to Keras input style. X = X.transpose(0, 2, 1) check_random_state(self.random_state) self.input_shape = X.shape[1:] self.model_ = self.build_model(self.input_shape) if self.verbose: self.model_.summary() self.callbacks_ = deepcopy(self.callbacks) self.history = self.model_.fit( X, y, batch_size=self.batch_size, epochs=self.n_epochs, verbose=self.verbose, callbacks=self.callbacks_, ) return self
[文档] @classmethod def get_test_params(cls, parameter_set="default"): """Return testing parameter settings for the estimator. Parameters ---------- parameter_set : str, default="default" Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return ``"default"`` set. For classifiers, a "default" set of parameters should be provided for general testing, and a "results_comparison" set for comparing against previously recorded results if the general set does not produce suitable probabilities to compare against. Returns ------- params : dict or list of dict, default={} Parameters to create testing instances of the class. Each dict are parameters to construct an "interesting" test instance, i.e., ``MyClass(**params)`` or ``MyClass(**params[i])`` creates a valid test instance. ``create_test_instance`` uses the first (or only) dictionary in ``params``. """ from sktime.utils.dependencies import _check_soft_dependencies param1 = { "n_epochs": 6, "batch_size": 4, "use_bias": False, } param2 = { "n_epochs": 4, "batch_size": 6, "use_bias": True, } test_params = [param1, param2] if _check_soft_dependencies("keras", severity="none"): from keras.callbacks import LambdaCallback test_params.append( { "n_epochs": 2, "callbacks": [LambdaCallback()], } ) return test_params