"""Residual Network (ResNet) for regression."""
__author__ = ["James-Large", "Withington"]
from copy import deepcopy
from sklearn.utils import check_random_state
from sktime.networks.resnet import ResNetNetwork
from sktime.regression.deep_learning.base import BaseDeepRegressor
from sktime.utils.dependencies import _check_dl_dependencies
[文档]class ResNetRegressor(BaseDeepRegressor):
"""Residual Neural Network Regressor adopted from [1].
Parameters
----------
n_epochs : int, default = 1500
the number of epochs to train the model
batch_size : int, default = 16
the number of samples per gradient update.
random_state : int or None, default=None
Seed for random number generation.
verbose : boolean, default = False
whether to output extra information
loss : string, default="mean_squared_error"
fit parameter for the keras model
optimizer : keras.optimizer, default=keras.optimizers.Adam(),
metrics : list of strings, default=["mean_squared_error"],
activation : string or a tf callable, default="linear"
Activation function used in the output linear layer.
List of available activation functions:
https://keras.io/api/layers/activations/
use_bias : boolean, default = True
whether the layer uses a bias vector.
optimizer : keras.optimizers object, default = Adam(lr=0.01)
specify the optimizer and the learning rate to be used.
Notes
-----
Adapted from the implementation from source code
https://github.com/hfawaz/dl-4-tsc/blob/master/classifiers/resnet.py
References
----------
.. [1] Wang et. al, Time series classification from
scratch with deep neural networks: A strong baseline,
International joint conference on neural networks (IJCNN), 2017.
Examples
--------
>>> from sktime.regression.deep_learning.resnet import ResNetRegressor
>>> from sktime.datasets import load_unit_test
>>> X_train, y_train = load_unit_test(split="train")
>>> clf = ResNetRegressor(n_epochs=20, batch_size=4) # doctest: +SKIP
>>> clf.fit(X_train, Y_train) # doctest: +SKIP
ResNetRegressor(...)
"""
_tags = {
# packaging info
# --------------
"authors": ["James-Large", "Withington"],
"maintainers": ["Withington"],
"python_dependencies": "tensorflow",
# estimator type handled by parent class
}
def __init__(
self,
n_epochs=1500,
callbacks=None,
verbose=False,
loss="mean_squared_error",
metrics=None,
batch_size=16,
random_state=None,
activation="linear",
use_bias=True,
optimizer=None,
):
_check_dl_dependencies(severity="error")
self.n_epochs = n_epochs
self.callbacks = callbacks
self.verbose = verbose
self.loss = loss
self.metrics = metrics
self.batch_size = batch_size
self.random_state = random_state
self.activation = activation
self.use_bias = use_bias
self.optimizer = optimizer
super().__init__()
self.history = None
self._network = ResNetNetwork(random_state=random_state)
[文档] def build_model(self, input_shape, **kwargs):
"""Construct a compiled, un-trained, keras model that is ready for training.
In sktime, time series are stored in numpy arrays of shape (d,m), where d
is the number of dimensions, m is the series length. Keras/tensorflow assume
data is in shape (m,d). This method also assumes (m,d). Transpose should
happen in fit.
Parameters
----------
input_shape : tuple
The shape of the data fed into the input layer, should be (m,d)
Returns
-------
output : a compiled Keras Model
"""
import tensorflow as tf
from tensorflow import keras
tf.random.set_seed(self.random_state)
self.optimizer_ = (
keras.optimizers.Adam(learning_rate=0.01)
if self.optimizer is None
else self.optimizer
)
if self.metrics is None:
metrics = [
"mean_squared_error",
]
else:
metrics = self.metrics
input_layer, output_layer = self._network.build_network(input_shape, **kwargs)
output_layer = keras.layers.Dense(
units=1, activation=self.activation, use_bias=self.use_bias
)(output_layer)
model = keras.models.Model(inputs=input_layer, outputs=output_layer)
model.compile(
loss=self.loss,
optimizer=self.optimizer_,
metrics=metrics,
)
return model
def _fit(self, X, y):
"""Fit the regressor on the training set (X, y).
Parameters
----------
X : np.ndarray of shape = (n_instances (n), n_dimensions (d), series_length (m))
The training input samples.
y : np.ndarray of shape n
The training data class labels.
Returns
-------
self : object
"""
# Transpose to conform to Keras input style.
X = X.transpose(0, 2, 1)
check_random_state(self.random_state)
self.input_shape = X.shape[1:]
self.model_ = self.build_model(self.input_shape)
if self.verbose:
self.model_.summary()
self.callbacks_ = deepcopy(self.callbacks)
self.history = self.model_.fit(
X,
y,
batch_size=self.batch_size,
epochs=self.n_epochs,
verbose=self.verbose,
callbacks=self.callbacks_,
)
return self
[文档] @classmethod
def get_test_params(cls, parameter_set="default"):
"""Return testing parameter settings for the estimator.
Parameters
----------
parameter_set : str, default="default"
Name of the set of test parameters to return, for use in tests. If no
special parameters are defined for a value, will return ``"default"`` set.
For classifiers, a "default" set of parameters should be provided for
general testing, and a "results_comparison" set for comparing against
previously recorded results if the general set does not produce suitable
probabilities to compare against.
Returns
-------
params : dict or list of dict, default={}
Parameters to create testing instances of the class.
Each dict are parameters to construct an "interesting" test instance, i.e.,
``MyClass(**params)`` or ``MyClass(**params[i])`` creates a valid test
instance.
``create_test_instance`` uses the first (or only) dictionary in ``params``.
"""
from sktime.utils.dependencies import _check_soft_dependencies
param1 = {
"n_epochs": 6,
"batch_size": 4,
"use_bias": False,
}
param2 = {
"n_epochs": 4,
"batch_size": 6,
"use_bias": True,
}
test_params = [param1, param2]
if _check_soft_dependencies("keras", severity="none"):
from keras.callbacks import LambdaCallback
test_params.append(
{
"n_epochs": 2,
"callbacks": [LambdaCallback()],
}
)
return test_params