sktime.transformations.series.hpfilter 源代码

"""Interface to Hodrick-Prescott filter from ``statsmodels``.

Please see the original library

(https://github.com/statsmodels/statsmodels/blob/main/statsmodels/tsa/filters/hp_filter.py)
Interfaces ``hp_filter`` from ``statsmodels.tsa.filters``.
"""

# copyright: sktime developers, BSD-3-Clause License (see LICENSE file)

__author__ = ["ken_maeda"]
__all__ = ["HPFilter"]


import pandas as pd

from sktime.transformations.base import BaseTransformer


[文档]class HPFilter(BaseTransformer): """Filter a times series using the Hodrick-Prescott filter. This is a wrapper around the ``hpfilter`` function from ``statsmodels``. (see ``statsmodels.tsa.filters.hp_filter.hpfilter``). Parameters ---------- lamb : float The Hodrick-Prescott smoothing parameter. A value of 1600 is suggested for quarterly data. Ravn and Uhlig suggest using a value of 6.25 (1600/4**4) for annual data and 129600 (1600*3**4) for monthly data. Notes ----- The HP filter removes a smooth trend ---------- Hodrick, R.J, and E. C. Prescott. 1980. "Postwar U.S. Business Cycles: An Empirical Investigation." `Carnegie Mellon University discussion paper no. 451`. Ravn, M.O and H. Uhlig. 2002. "Notes On Adjusted the Hodrick-Prescott Filter for the Frequency of Observations." `The Review of Economics and Statistics`, 84(2), 371-80. Examples -------- >>> from sktime.transformations.series.hpfilter import HPFilter # doctest: +SKIP >>> import pandas as pd # doctest: +SKIP >>> import statsmodels.api as sm # doctest: +SKIP >>> dta = sm.datasets.macrodata.load_pandas().data # doctest: +SKIP >>> index = pd.period_range('1959Q1', '2009Q3', freq='Q') # doctest: +SKIP >>> dta.set_index(index, inplace=True) # doctest: +SKIP >>> hp = HPFilter(1600) # doctest: +SKIP >>> cycles = hp.fit_transform(X=dta[['realinv']]) # doctest: +SKIP """ _tags = { "authors": ["ken_maeda"], "maintainers": ["ken_maeda"], "scitype:transform-input": "Series", # what is the scitype of X: Series, or Panel "scitype:transform-output": "Series", # what scitype is returned: Primitives, Series, Panel "scitype:instancewise": True, # is this an instance-wise transform? "univariate-only": True, # can the transformer handle multivariate X? "X_inner_mtype": "np.ndarray", # which mtypes do _fit/_predict support for X? # this can be a Panel mtype even if transform-input is Series, vectorized "y_inner_mtype": "None", # which mtypes do _fit/_predict support for y? "requires_y": False, # does y need to be passed in fit? "enforce_index_type": [ pd.RangeIndex ], # index type that needs to be enforced in X/y "fit_is_empty": True, # is fit empty and can be skipped? Yes = True "transform-returns-same-time-index": False, # does transform return have the same time index as input X "capability:unequal_length": True, # can the transformer handle unequal length time series (if passed Panel)? "handles-missing-data": False, # can estimator handle missing data? "remember_data": False, # whether all data seen is remembered as self._X "python_dependencies": "statsmodels", } def __init__( self, lamb=1600, ): self.lamb = lamb super().__init__() def _transform(self, X, y=None): """Transform X and return a transformed version. private _transform containing core logic, called from transform Parameters ---------- X : array_like, A 1d array Returns ------- transformed cyclical version of X """ from statsmodels.tsa.filters.hp_filter import hpfilter kwargs = {"lamb": self.lamb} return hpfilter(X, **kwargs)[0]
[文档] @classmethod def get_test_params(cls, parameter_set="default"): """Return testing parameter settings for the estimator. Parameters ---------- parameter_set : str, default="default" Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return ``"default"`` set. There are currently no reserved values for transformers. Returns ------- params : dict or list of dict, default = {} Parameters to create testing instances of the class Each dict are parameters to construct an "interesting" test instance, i.e., ``MyClass(**params)`` or ``MyClass(**params[i])`` creates a valid test instance. ``create_test_instance`` uses the first (or only) dictionary in ``params`` """ params1 = {"lamb": 1600} params2 = {} return [params1, params2]