保存分片状态#
源代码 vllm-project/vllm.
1"""
2Saves each worker's model state dict directly to a checkpoint, which enables a
3fast load path for large tensor-parallel models where each worker only needs to
4read its own shard rather than the entire checkpoint.
5
6Example usage:
7
8python save_sharded_state.py \
9 --model /path/to/load \
10 --quantization deepspeedfp \
11 --tensor-parallel-size 8 \
12 --output /path/to/save
13
14Then, the model can be loaded with
15
16llm = LLM(
17 model="/path/to/save",
18 load_format="sharded_state",
19 quantization="deepspeedfp",
20 tensor_parallel_size=8,
21)
22"""
23import dataclasses
24import os
25import shutil
26from pathlib import Path
27
28from vllm import LLM, EngineArgs
29from vllm.utils import FlexibleArgumentParser
30
31parser = FlexibleArgumentParser()
32EngineArgs.add_cli_args(parser)
33parser.add_argument("--output",
34 "-o",
35 required=True,
36 type=str,
37 help="path to output checkpoint")
38parser.add_argument("--file-pattern",
39 type=str,
40 help="string pattern of saved filenames")
41parser.add_argument("--max-file-size",
42 type=str,
43 default=5 * 1024**3,
44 help="max size (in bytes) of each safetensors file")
45
46
47def main(args):
48 engine_args = EngineArgs.from_cli_args(args)
49 if engine_args.enable_lora:
50 raise ValueError("Saving with enable_lora=True is not supported!")
51 model_path = engine_args.model
52 if not Path(model_path).is_dir():
53 raise ValueError("model path must be a local directory")
54 # Create LLM instance from arguments
55 llm = LLM(**dataclasses.asdict(engine_args))
56 # Prepare output directory
57 Path(args.output).mkdir(exist_ok=True)
58 # Dump worker states to output directory
59 model_executor = llm.llm_engine.model_executor
60 model_executor.save_sharded_state(path=args.output,
61 pattern=args.file_pattern,
62 max_size=args.max_file_size)
63 # Copy metadata files to output directory
64 for file in os.listdir(model_path):
65 if os.path.splitext(file)[1] not in (".bin", ".pt", ".safetensors"):
66 if os.path.isdir(os.path.join(model_path, file)):
67 shutil.copytree(os.path.join(model_path, file),
68 os.path.join(args.output, file))
69 else:
70 shutil.copy(os.path.join(model_path, file), args.output)
71
72
73if __name__ == "__main__":
74 args = parser.parse_args()
75 main(args)