Tree
- Tree
- Tree
- Tree
- Conditions
- AbstractCondition
- NumericalHigherThanCondition
- CategoricalIsInCondition
- CategoricalSetContainsCondition
- DiscretizedNumericalHigherThanCondition
- IsMissingInCondition
- IsTrueCondition
- NumericalSparseObliqueCondition
- Nodes
- AbstractNode
- Leaf
- NonLeaf
- Values
- AbstractValue
- RegressionValue
- ProbabilityValue
- UpliftValue
Tree
Tree
dataclass
Tree(root: AbstractNode)
plot
plot(dataspec: DataSpecification, max_depth: Optional[int], label_classes: Optional[Sequence[str]], options: Optional[PlotOptions] = None, d3js_url: str = 'https://d3js.org/d3.v6.min.js') -> TreePlot
Plots a decision tree.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataspec
|
DataSpecification
|
Dataspec of the tree. |
required |
max_depth
|
Optional[int]
|
Maximum tree depth of the plot. Set to None for full depth. |
required |
label_classes
|
Optional[Sequence[str]]
|
For classification, label classes of the dataset. |
required |
options
|
Optional[PlotOptions]
|
Advanced options for plotting. Set to None for default style. |
None
|
d3js_url
|
str
|
URL to load the d3.js library from. |
'https://d3js.org/d3.v6.min.js'
|
Returns:
Type | Description |
---|---|
TreePlot
|
The html content displaying the tree. |
Conditions
AbstractCondition
dataclass
Generic condition.
Attrs
missing: Result of the evaluation of the condition if the input feature is missing. score: Score of a condition. The semantic depends on the learning algorithm.
NumericalHigherThanCondition
dataclass
Bases: AbstractCondition
Condition of the form "attribute >= threshold".
Attrs
attribute: Attribute tested by the condition. threshold: Threshold.
CategoricalIsInCondition
dataclass
Bases: AbstractCondition
Condition of the form "attribute in mask".
Attrs
attribute: Attribute tested by the condition. mask: Sorted mask values.
CategoricalSetContainsCondition
dataclass
Bases: AbstractCondition
Condition of the form "attribute intersect mask != empty".
Attrs
attribute: Attribute tested by the condition. mask: Sorted mask values.
DiscretizedNumericalHigherThanCondition
dataclass
DiscretizedNumericalHigherThanCondition(missing: bool, score: float, attribute: int, threshold_idx: int)
Bases: AbstractCondition
Condition of the form "attribute >= bounds[threshold]".
Attrs
attribute: Attribute tested by the condition. threshold_idx: Index of threshold in dataspec.
IsMissingInCondition
dataclass
Bases: AbstractCondition
Condition of the form "attribute is missing".
Attrs
attribute: Attribute (or one of the attributes) tested by the condition.
IsTrueCondition
dataclass
Bases: AbstractCondition
Condition of the form "attribute is true".
Attrs
attribute: Attribute tested by the condition.
NumericalSparseObliqueCondition
dataclass
NumericalSparseObliqueCondition(missing: bool, score: float, attributes: Sequence[int], weights: Sequence[float], threshold: float)
Bases: AbstractCondition
Condition of the form "attributes * weights >= threshold".
Attrs
attributes: Attribute tested by the condition. weights: Weights for each of the attributes. threshold: Threshold value of the condition.
Nodes
AbstractNode
NonLeaf
dataclass
NonLeaf(value: Optional[AbstractValue] = None, condition: Optional[AbstractCondition] = None, pos_child: Optional[AbstractNode] = None, neg_child: Optional[AbstractNode] = None)
Bases: AbstractNode
Values
AbstractValue
dataclass
AbstractValue(num_examples: float)
A generic value/prediction/output.
Attrs
num_examples: Number of examples in the node with weight.
RegressionValue
dataclass
Bases: AbstractValue
The regression value of a regressive tree.
Can also be used in gradient-boosted-trees for classification and ranking.
Attrs
value: Value of the tree. The semantic depends on the tree: For Regression Random Forest and Regression GBDT, this value is a regressive value in the same unit as the label. For classification and ranking GBDTs, this value is a logit. standard_deviation: Optional standard deviation attached to the value.
ProbabilityValue
dataclass
Bases: AbstractValue
A probability distribution value.
Used for random Forest / CART classification trees.
Attrs
probability: An array of probabilities of the label classes i.e. the i-th value is the probability of the "label_value_idx_to_value(..., i)" class. Note that the first value is reserved for the Out-of-vocabulary
UpliftValue
dataclass
Bases: AbstractValue
The uplift value of a classification or regression uplift tree.
Attrs
treatment_effect: An array of the effects on the treatment groups. The i-th element of this array is the effect of the "i+1"th treatment compared to the control group.