Skip to content

Reference for ultralytics/hub/google/__init__.py

Note

This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/hub/google/__init__.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!


ultralytics.hub.google.GCPRegions

GCPRegions()

A class for managing and analyzing Google Cloud Platform (GCP) regions.

This class provides functionality to initialize, categorize, and analyze GCP regions based on their geographical location, tier classification, and network latency.

Attributes:

Name Type Description
regions Dict[str, Tuple[int, str, str]]

A dictionary of GCP regions with their tier, city, and country.

Methods:

Name Description
tier1

Returns a list of tier 1 GCP regions.

tier2

Returns a list of tier 2 GCP regions.

lowest_latency

Determines the GCP region(s) with the lowest network latency.

Examples:

>>> from ultralytics.hub.google import GCPRegions
>>> regions = GCPRegions()
>>> lowest_latency_region = regions.lowest_latency(verbose=True, attempts=3)
>>> print(f"Lowest latency region: {lowest_latency_region[0][0]}")
Source code in ultralytics/hub/google/__init__.py
def __init__(self):
    """Initializes the GCPRegions class with predefined Google Cloud Platform regions and their details."""
    self.regions = {
        "asia-east1": (1, "Taiwan", "China"),
        "asia-east2": (2, "Hong Kong", "China"),
        "asia-northeast1": (1, "Tokyo", "Japan"),
        "asia-northeast2": (1, "Osaka", "Japan"),
        "asia-northeast3": (2, "Seoul", "South Korea"),
        "asia-south1": (2, "Mumbai", "India"),
        "asia-south2": (2, "Delhi", "India"),
        "asia-southeast1": (2, "Jurong West", "Singapore"),
        "asia-southeast2": (2, "Jakarta", "Indonesia"),
        "australia-southeast1": (2, "Sydney", "Australia"),
        "australia-southeast2": (2, "Melbourne", "Australia"),
        "europe-central2": (2, "Warsaw", "Poland"),
        "europe-north1": (1, "Hamina", "Finland"),
        "europe-southwest1": (1, "Madrid", "Spain"),
        "europe-west1": (1, "St. Ghislain", "Belgium"),
        "europe-west10": (2, "Berlin", "Germany"),
        "europe-west12": (2, "Turin", "Italy"),
        "europe-west2": (2, "London", "United Kingdom"),
        "europe-west3": (2, "Frankfurt", "Germany"),
        "europe-west4": (1, "Eemshaven", "Netherlands"),
        "europe-west6": (2, "Zurich", "Switzerland"),
        "europe-west8": (1, "Milan", "Italy"),
        "europe-west9": (1, "Paris", "France"),
        "me-central1": (2, "Doha", "Qatar"),
        "me-west1": (1, "Tel Aviv", "Israel"),
        "northamerica-northeast1": (2, "Montreal", "Canada"),
        "northamerica-northeast2": (2, "Toronto", "Canada"),
        "southamerica-east1": (2, "São Paulo", "Brazil"),
        "southamerica-west1": (2, "Santiago", "Chile"),
        "us-central1": (1, "Iowa", "United States"),
        "us-east1": (1, "South Carolina", "United States"),
        "us-east4": (1, "Northern Virginia", "United States"),
        "us-east5": (1, "Columbus", "United States"),
        "us-south1": (1, "Dallas", "United States"),
        "us-west1": (1, "Oregon", "United States"),
        "us-west2": (2, "Los Angeles", "United States"),
        "us-west3": (2, "Salt Lake City", "United States"),
        "us-west4": (2, "Las Vegas", "United States"),
    }

lowest_latency

lowest_latency(top: int = 1, verbose: bool = False, tier: Optional[int] = None, attempts: int = 1) -> List[Tuple[str, float, float, float, float]]

Determines the GCP regions with the lowest latency based on ping tests.

Parameters:

Name Type Description Default
top int

Number of top regions to return.

1
verbose bool

If True, prints detailed latency information for all tested regions.

False
tier int | None

Filter regions by tier (1 or 2). If None, all regions are tested.

None
attempts int

Number of ping attempts per region.

1

Returns:

Type Description
List[Tuple[str, float, float, float, float]]

List of tuples containing region information and

List[Tuple[str, float, float, float, float]]

latency statistics. Each tuple contains (region, mean_latency, std_dev, min_latency, max_latency).

Examples:

>>> regions = GCPRegions()
>>> results = regions.lowest_latency(top=3, verbose=True, tier=1, attempts=2)
>>> print(results[0][0])  # Print the name of the lowest latency region
Source code in ultralytics/hub/google/__init__.py
def lowest_latency(
    self,
    top: int = 1,
    verbose: bool = False,
    tier: Optional[int] = None,
    attempts: int = 1,
) -> List[Tuple[str, float, float, float, float]]:
    """
    Determines the GCP regions with the lowest latency based on ping tests.

    Args:
        top (int): Number of top regions to return.
        verbose (bool): If True, prints detailed latency information for all tested regions.
        tier (int | None): Filter regions by tier (1 or 2). If None, all regions are tested.
        attempts (int): Number of ping attempts per region.

    Returns:
        (List[Tuple[str, float, float, float, float]]): List of tuples containing region information and
        latency statistics. Each tuple contains (region, mean_latency, std_dev, min_latency, max_latency).

    Examples:
        >>> regions = GCPRegions()
        >>> results = regions.lowest_latency(top=3, verbose=True, tier=1, attempts=2)
        >>> print(results[0][0])  # Print the name of the lowest latency region
    """
    if verbose:
        print(f"Testing GCP regions for latency (with {attempts} {'retry' if attempts == 1 else 'attempts'})...")

    regions_to_test = [k for k, v in self.regions.items() if v[0] == tier] if tier else list(self.regions.keys())
    with concurrent.futures.ThreadPoolExecutor(max_workers=50) as executor:
        results = list(executor.map(lambda r: self._ping_region(r, attempts), regions_to_test))

    sorted_results = sorted(results, key=lambda x: x[1])

    if verbose:
        print(f"{'Region':<25} {'Location':<35} {'Tier':<5} Latency (ms)")
        for region, mean, std, min_, max_ in sorted_results:
            tier, city, country = self.regions[region]
            location = f"{city}, {country}"
            if mean == float("inf"):
                print(f"{region:<25} {location:<35} {tier:<5} Timeout")
            else:
                print(f"{region:<25} {location:<35} {tier:<5} {mean:.0f} ± {std:.0f} ({min_:.0f} - {max_:.0f})")
        print(f"\nLowest latency region{'s' if top > 1 else ''}:")
        for region, mean, std, min_, max_ in sorted_results[:top]:
            tier, city, country = self.regions[region]
            location = f"{city}, {country}"
            print(f"{region} ({location}, {mean:.0f} ± {std:.0f} ms ({min_:.0f} - {max_:.0f}))")

    return sorted_results[:top]

tier1

tier1() -> List[str]

Returns a list of GCP regions classified as tier 1 based on predefined criteria.

Source code in ultralytics/hub/google/__init__.py
def tier1(self) -> List[str]:
    """Returns a list of GCP regions classified as tier 1 based on predefined criteria."""
    return [region for region, info in self.regions.items() if info[0] == 1]

tier2

tier2() -> List[str]

Returns a list of GCP regions classified as tier 2 based on predefined criteria.

Source code in ultralytics/hub/google/__init__.py
def tier2(self) -> List[str]:
    """Returns a list of GCP regions classified as tier 2 based on predefined criteria."""
    return [region for region, info in self.regions.items() if info[0] == 2]




📅 Created 2 months ago ✏️ Updated 1 month ago