dask.dataframe.groupby.SeriesGroupBy.size

dask.dataframe.groupby.SeriesGroupBy.size

SeriesGroupBy.size(split_every=None, split_out=1, shuffle_method=None)

计算组大小。

此文档字符串是从 pandas.core.groupby.groupby.GroupBy.size 复制的。

Dask 版本可能存在一些不一致性。

返回
DataFrame 或 Series

如果 as_index 为 True,则为每个组的行数作为一个 Series;如果 as_index 为 False,则为每个组的行数作为一个 DataFrame。

参见

Series.groupby

对一个 Series 应用 groupby 函数。

DataFrame.groupby

对DataFrame的每一行或每一列应用一个groupby函数。

示例

对于 SeriesGroupBy:

>>> lst = ['a', 'a', 'b']  
>>> ser = pd.Series([1, 2, 3], index=lst)  
>>> ser  
a     1
a     2
b     3
dtype: int64
>>> ser.groupby(level=0).size()  
a    2
b    1
dtype: int64
>>> data = [[1, 2, 3], [1, 5, 6], [7, 8, 9]]  
>>> df = pd.DataFrame(data, columns=["a", "b", "c"],  
...                   index=["owl", "toucan", "eagle"])
>>> df  
        a  b  c
owl     1  2  3
toucan  1  5  6
eagle   7  8  9
>>> df.groupby("a").size()  
a
1    2
7    1
dtype: int64

对于重采样器:

>>> ser = pd.Series([1, 2, 3], index=pd.DatetimeIndex(  
...                 ['2023-01-01', '2023-01-15', '2023-02-01']))
>>> ser  
2023-01-01    1
2023-01-15    2
2023-02-01    3
dtype: int64
>>> ser.resample('MS').size()  
2023-01-01    2
2023-02-01    1
Freq: MS, dtype: int64