dask_expr._groupby.SeriesGroupBy.count
dask_expr._groupby.SeriesGroupBy.count¶
- SeriesGroupBy.count(**kwargs)¶
计算组的数量,排除缺失值。
此文档字符串是从 pandas.core.groupby.groupby.GroupBy.count 复制的。
Dask 版本可能存在一些不一致性。
- 返回
- Series 或 DataFrame
每个组内值的计数。
参见
Series.groupby
对一个 Series 应用 groupby 函数。
DataFrame.groupby
对DataFrame的每一行或每一列应用一个groupby函数。
示例
对于 SeriesGroupBy:
>>> lst = ['a', 'a', 'b'] >>> ser = pd.Series([1, 2, np.nan], index=lst) >>> ser a 1.0 a 2.0 b NaN dtype: float64 >>> ser.groupby(level=0).count() a 2 b 0 dtype: int64
对于 DataFrameGroupBy:
>>> data = [[1, np.nan, 3], [1, np.nan, 6], [7, 8, 9]] >>> df = pd.DataFrame(data, columns=["a", "b", "c"], ... index=["cow", "horse", "bull"]) >>> df a b c cow 1 NaN 3 horse 1 NaN 6 bull 7 8.0 9 >>> df.groupby("a").count() b c a 1 0 2 7 1 1
对于重采样器:
>>> ser = pd.Series([1, 2, 3, 4], index=pd.DatetimeIndex( ... ['2023-01-01', '2023-01-15', '2023-02-01', '2023-02-15'])) >>> ser 2023-01-01 1 2023-01-15 2 2023-02-01 3 2023-02-15 4 dtype: int64 >>> ser.resample('MS').count() 2023-01-01 2 2023-02-01 2 Freq: MS, dtype: int64