# This file is part of DEAP.
#
# DEAP is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as
# published by the Free Software Foundation, either version 3 of
# the License, or (at your option) any later version.
#
# DEAP is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with DEAP. If not, see <http://www.gnu.org/licenses/>.
from functools import wraps
[docs]def bin2float(min_, max_, nbits):
"""Convert a binary array into an array of float where each
float is composed of *nbits* and is between *min_* and *max_*
and return the result of the decorated function.
"""
def wrap(function):
@wraps(function)
def wrapped_function(individual, *args, **kargs):
# User must take care to make nelem an integer.
nelem = len(individual) // nbits
decoded = [0] * nelem
for i in range(nelem):
gene = int("".join(map(str,
individual[i*nbits:i*nbits+nbits])),
2)
div = 2**nbits - 1
temp = gene/div
decoded[i] = min_ + (temp * (max_ - min_))
return function(decoded, *args, **kargs)
return wrapped_function
return wrap
def trap(individual):
u = sum(individual)
k = len(individual)
if u == k:
return k
else:
return k - 1 - u
def inv_trap(individual):
u = sum(individual)
k = len(individual)
if u == 0:
return k
else:
return u - 1
[docs]def chuang_f1(individual):
"""Binary deceptive function from : Multivariate Multi-Model Approach for
Globally Multimodal Problems by Chung-Yao Chuang and Wen-Lian Hsu.
The function takes individual of 40+1 dimensions and has two global optima
in [1,1,...,1] and [0,0,...,0].
"""
total = 0
if individual[-1] == 0:
for i in range(0, len(individual)-1, 4):
total += inv_trap(individual[i:i+4])
else:
for i in range(0, len(individual)-1, 4):
total += trap(individual[i:i+4])
return total,
[docs]def chuang_f2(individual):
"""Binary deceptive function from : Multivariate Multi-Model Approach for
Globally Multimodal Problems by Chung-Yao Chuang and Wen-Lian Hsu.
The function takes individual of 40+1 dimensions and has four global optima
in [1,1,...,0,0], [0,0,...,1,1], [1,1,...,1] and [0,0,...,0].
"""
total = 0
if individual[-2] == 0 and individual[-1] == 0:
for i in range(0, len(individual)-2, 8):
total += inv_trap(individual[i:i+4]) + inv_trap(individual[i+4:i+8])
elif individual[-2] == 0 and individual[-1] == 1:
for i in range(0, len(individual)-2, 8):
total += inv_trap(individual[i:i+4]) + trap(individual[i+4:i+8])
elif individual[-2] == 1 and individual[-1] == 0:
for i in range(0, len(individual)-2, 8):
total += trap(individual[i:i+4]) + inv_trap(individual[i+4:i+8])
else:
for i in range(0, len(individual)-2, 8):
total += trap(individual[i:i+4]) + trap(individual[i+4:i+8])
return total,
[docs]def chuang_f3(individual):
"""Binary deceptive function from : Multivariate Multi-Model Approach for
Globally Multimodal Problems by Chung-Yao Chuang and Wen-Lian Hsu.
The function takes individual of 40+1 dimensions and has two global optima
in [1,1,...,1] and [0,0,...,0].
"""
total = 0
if individual[-1] == 0:
for i in range(0, len(individual)-1, 4):
total += inv_trap(individual[i:i+4])
else:
for i in range(2, len(individual)-3, 4):
total += inv_trap(individual[i:i+4])
total += trap(individual[-2:]+individual[:2])
return total,
# Royal Road Functions
[docs]def royal_road1(individual, order):
"""Royal Road Function R1 as presented by Melanie Mitchell in :
"An introduction to Genetic Algorithms".
"""
nelem = len(individual) // order
max_value = int(2**order - 1)
total = 0
for i in range(nelem):
value = int("".join(map(str, individual[i*order:i*order+order])), 2)
total += int(order) * int(value/max_value)
return total,
[docs]def royal_road2(individual, order):
"""Royal Road Function R2 as presented by Melanie Mitchell in :
"An introduction to Genetic Algorithms".
"""
total = 0
norder = order
while norder < order**2:
total += royal_road1(individual, norder)[0]
norder *= 2
return total,