feature_engine.imputation.categorical 源代码

# Authors: Soledad Galli <solegalli@protonmail.com>
# License: BSD 3 clause

from typing import List, Optional, Union

import pandas as pd

from feature_engine._check_init_parameters.check_variables import (
    _check_variables_input_value,
)
from feature_engine._docstrings.fit_attributes import (
    _feature_names_in_docstring,
    _imputer_dict_docstring,
    _n_features_in_docstring,
    _variables_attribute_docstring,
)
from feature_engine._docstrings.methods import (
    _fit_transform_docstring,
    _transform_imputers_docstring,
)
from feature_engine._docstrings.substitute import Substitution
from feature_engine.dataframe_checks import check_X
from feature_engine.imputation.base_imputer import BaseImputer
from feature_engine.tags import _return_tags
from feature_engine.variable_handling import (
    check_all_variables,
    check_categorical_variables,
    find_all_variables,
    find_categorical_variables,
)


[文档]@Substitution( imputer_dict_=_imputer_dict_docstring, variables_=_variables_attribute_docstring, feature_names_in_=_feature_names_in_docstring, n_features_in_=_n_features_in_docstring, transform=_transform_imputers_docstring, fit_transform=_fit_transform_docstring, ) class CategoricalImputer(BaseImputer): """ The CategoricalImputer() replaces missing data in categorical variables by an arbitrary value or by the most frequent category. The CategoricalImputer() imputes by default only categorical variables (type 'object' or 'categorical'). You can pass a list of variables to impute, or alternatively, the encoder will find and impute all categorical variables. If you want to impute numerical variables with this transformer, there are 2 ways of doing it: **Option 1**: Cast your numerical variables as object in the input dataframe before passing it to the transformer. **Option 2**: Set `ignore_format=True`. Note that if you do this and do not pass the list of variables to impute, the imputer will automatically select and impute all variables in the dataframe. More details in the :ref:`User Guide <categorical_imputer>`. Parameters ---------- imputation_method: str, default='missing' Desired method of imputation. Can be 'frequent' for frequent category imputation or 'missing' to impute with an arbitrary value. fill_value: str, int, float, default='Missing' User-defined value to replace missing data. Only used when `imputation_method='missing'`. variables: list, default=None The list of categorical variables that will be imputed. If None, the imputer will find and transform all variables of type object or categorical by default. You can also make the transformer accept numerical variables, see the parameter `ignore_format` below. return_object: bool, default=False If working with numerical variables cast as object, decide whether to return the variables as numeric or re-cast them as object. Note that pandas will re-cast them automatically as numeric after the transformation with the mode or with an arbitrary number. ignore_format: bool, default=False Whether the format in which the categorical variables are cast should be ignored. If false, the imputer will automatically select variables of type object or categorical, or check that the variables entered by the user are of type object or categorical. If True, the imputer will select all variables or accept all variables entered by the user, including those cast as numeric. Attributes ---------- {imputer_dict_} {variables_} {feature_names_in_} {n_features_in_} Methods ------- fit: Learn the most frequent category or assign arbitrary value to variable. {fit_transform} {transform} Examples -------- >>> import pandas as pd >>> import numpy as np >>> from feature_engine.imputation import CategoricalImputer >>> X = pd.DataFrame(dict( >>> x1 = [np.nan,1,1,0,np.nan], >>> x2 = ["a", np.nan, "b", np.nan, "a"], >>> )) >>> ci = CategoricalImputer(imputation_method='frequent') >>> ci.fit(X) >>> ci.transform(X) x1 x2 0 NaN a 1 1.0 a 2 1.0 b 3 0.0 a 4 NaN a """ def __init__( self, imputation_method: str = "missing", fill_value: Union[str, int, float] = "Missing", variables: Union[None, int, str, List[Union[str, int]]] = None, return_object: bool = False, ignore_format: bool = False, ) -> None: if imputation_method not in ["missing", "frequent"]: raise ValueError( "imputation_method takes only values 'missing' or 'frequent'" ) if not isinstance(ignore_format, bool): raise ValueError("ignore_format takes only booleans True and False") self.imputation_method = imputation_method self.fill_value = fill_value self.variables = _check_variables_input_value(variables) self.return_object = return_object self.ignore_format = ignore_format
[文档] def fit(self, X: pd.DataFrame, y: Optional[pd.Series] = None): """ Learn the most frequent category if the imputation method is set to frequent. Parameters ---------- X: pandas dataframe of shape = [n_samples, n_features] The training dataset. y: pandas Series, default=None y is not needed in this imputation. You can pass None or y. """ # check input dataframe X = check_X(X) # select variables to encode if self.ignore_format is True: if self.variables is None: self.variables_ = find_all_variables(X) else: self.variables_ = check_all_variables(X, self.variables) else: if self.variables is None: self.variables_ = find_categorical_variables(X) else: self.variables_ = check_categorical_variables(X, self.variables) if self.imputation_method == "missing": self.imputer_dict_ = {var: self.fill_value for var in self.variables_} elif self.imputation_method == "frequent": # if imputing only 1 variable: if len(self.variables_) == 1: var = self.variables_[0] mode_vals = X[var].mode() # Some variables may contain more than 1 mode: if len(mode_vals) > 1: raise ValueError( f"The variable {var} contains multiple frequent categories." ) self.imputer_dict_ = {var: mode_vals[0]} # imputing multiple variables: else: # Returns a dataframe with 1 row if there is one mode per # variable, or more rows if there are more modes: mode_vals = X[self.variables_].mode() # Careful: some variables contain multiple modes if len(mode_vals) > 1: varnames = mode_vals.dropna(axis=1).columns.to_list() if len(varnames) > 1: varnames_str = ", ".join(varnames) else: varnames_str = varnames[0] raise ValueError( f"The variable(s) {varnames_str} contain(s) multiple frequent " f"categories." ) self.imputer_dict_ = mode_vals.iloc[0].to_dict() self._get_feature_names_in(X) return self
[文档] def transform(self, X: pd.DataFrame) -> pd.DataFrame: # Frequent category imputation if self.imputation_method == "frequent": X = super().transform(X) # Imputation with string else: X = self._transform(X) # if variable is of type category, we need to add the new # category, before filling in the nan add_cats = {} for variable in self.variables_: if X[variable].dtype.name == "category": add_cats.update( { variable: X[variable].cat.add_categories( self.imputer_dict_[variable] ) } ) X = X.assign(**add_cats).fillna(self.imputer_dict_) # add additional step to return variables cast as object if self.return_object: X[self.variables_] = X[self.variables_].astype("O") return X
# Get docstring from BaseClass transform.__doc__ = BaseImputer.transform.__doc__ def _more_tags(self): tags_dict = _return_tags() tags_dict["allow_nan"] = True tags_dict["variables"] = "categorical" return tags_dict