feature_engine.transformation.reciprocal 源代码

# Authors: Soledad Galli <solegalli@protonmail.com>
# License: BSD 3 clause

from typing import List, Optional, Union

import pandas as pd

from feature_engine._base_transformers.base_numerical import BaseNumericalTransformer
from feature_engine._check_init_parameters.check_variables import (
    _check_variables_input_value,
)
from feature_engine._docstrings.fit_attributes import (
    _feature_names_in_docstring,
    _n_features_in_docstring,
    _variables_attribute_docstring,
)
from feature_engine._docstrings.init_parameters.all_trasnformers import (
    _variables_numerical_docstring,
)
from feature_engine._docstrings.methods import (
    _fit_not_learn_docstring,
    _fit_transform_docstring,
    _inverse_transform_docstring,
)
from feature_engine._docstrings.substitute import Substitution
from feature_engine.tags import _return_tags


[文档]@Substitution( variables=_variables_numerical_docstring, variables_=_variables_attribute_docstring, feature_names_in_=_feature_names_in_docstring, n_features_in_=_n_features_in_docstring, fit=_fit_not_learn_docstring, fit_transform=_fit_transform_docstring, inverse_transform=_inverse_transform_docstring, ) class ReciprocalTransformer(BaseNumericalTransformer): """ The ReciprocalTransformer() applies the reciprocal transformation 1 / x to numerical variables. The ReciprocalTransformer() only works with numerical variables with non-zero values. If a variable contains the value 0, the transformer will raise an error. A list of variables can be passed as an argument. Alternatively, the transformer will automatically select and transform all numerical variables. More details in the :ref:`User Guide <reciprocal>`. Parameters ---------- {variables} Attributes ---------- {variables_} {feature_names_in_} {n_features_in_} Methods ------- {fit} {fit_transform} {inverse_transform} transform: Apply the reciprocal 1 / x transformation. Examples -------- >>> import numpy as np >>> import pandas as pd >>> from feature_engine.transformation import ReciprocalTransformer >>> np.random.seed(42) >>> X = pd.DataFrame(dict(x = 10 - np.random.exponential(size = 100))) >>> rt = ReciprocalTransformer() >>> rt.fit(X) >>> X = rt.transform(X) >>> X.head() x 0 0.104924 1 0.143064 2 0.115164 3 0.110047 4 0.101726 """ def __init__( self, variables: Union[None, int, str, List[Union[str, int]]] = None ) -> None: self.variables = _check_variables_input_value(variables)
[文档] def fit(self, X: pd.DataFrame, y: Optional[pd.Series] = None): """ This transformer does not learn parameters. Parameters ---------- X: Pandas DataFrame of shape = [n_samples, n_features]. The training input samples. Can be the entire dataframe, not just the variables to transform. y: pandas Series, default=None It is not needed in this transformer. You can pass y or None. """ # check input dataframe X = super().fit(X) # check if the variables contain the value 0 if (X[self.variables_] == 0).any().any(): raise ValueError( "Some variables contain the value zero, can't apply reciprocal " "transformation." ) return self
[文档] def transform(self, X: pd.DataFrame) -> pd.DataFrame: """ Apply the reciprocal 1 / x transformation. Parameters ---------- X: Pandas DataFrame of shape = [n_samples, n_features] The data to be transformed. Returns ------- X_new: pandas dataframe The dataframe with the transformed variables. """ # check input dataframe and if class was fitted X = self._check_transform_input_and_state(X) # check if the variables contain the value 0 if (X[self.variables_] == 0).any().any(): raise ValueError( "Some variables contain the value zero, can't apply reciprocal " "transformation." ) # transform X[self.variables_] = X[self.variables_].astype(float) X.loc[:, self.variables_] = 1 / X.loc[:, self.variables_] return X
[文档] def inverse_transform(self, X: pd.DataFrame) -> pd.DataFrame: """ Convert the data back to the original representation. Parameters ---------- X: Pandas DataFrame of shape = [n_samples, n_features] The data to be transformed. Returns ------- X_tr: pandas dataframe The dataframe with the transformed variables. """ # inverse_transform return self.transform(X)
def _more_tags(self): tags_dict = _return_tags() tags_dict["variables"] = "numerical" # ======= this tests fail because the transformers throw an error # when the values are 0. Nothing to do with the test itself but # mostly with the data created and used in the test msg = ( "transformers raise errors when data contains zeroes, thus this check fails" ) tags_dict["_xfail_checks"]["check_estimators_dtypes"] = msg tags_dict["_xfail_checks"]["check_estimators_fit_returns_self"] = msg tags_dict["_xfail_checks"]["check_pipeline_consistency"] = msg tags_dict["_xfail_checks"]["check_estimators_overwrite_params"] = msg tags_dict["_xfail_checks"]["check_estimators_pickle"] = msg tags_dict["_xfail_checks"]["check_transformer_general"] = msg return tags_dict