feature_engine.transformation.reciprocal 源代码
# Authors: Soledad Galli <solegalli@protonmail.com>
# License: BSD 3 clause
from typing import List, Optional, Union
import pandas as pd
from feature_engine._base_transformers.base_numerical import BaseNumericalTransformer
from feature_engine._check_init_parameters.check_variables import (
_check_variables_input_value,
)
from feature_engine._docstrings.fit_attributes import (
_feature_names_in_docstring,
_n_features_in_docstring,
_variables_attribute_docstring,
)
from feature_engine._docstrings.init_parameters.all_trasnformers import (
_variables_numerical_docstring,
)
from feature_engine._docstrings.methods import (
_fit_not_learn_docstring,
_fit_transform_docstring,
_inverse_transform_docstring,
)
from feature_engine._docstrings.substitute import Substitution
from feature_engine.tags import _return_tags
[文档]@Substitution(
variables=_variables_numerical_docstring,
variables_=_variables_attribute_docstring,
feature_names_in_=_feature_names_in_docstring,
n_features_in_=_n_features_in_docstring,
fit=_fit_not_learn_docstring,
fit_transform=_fit_transform_docstring,
inverse_transform=_inverse_transform_docstring,
)
class ReciprocalTransformer(BaseNumericalTransformer):
"""
The ReciprocalTransformer() applies the reciprocal transformation 1 / x
to numerical variables.
The ReciprocalTransformer() only works with numerical variables with non-zero
values. If a variable contains the value 0, the transformer will raise an error.
A list of variables can be passed as an argument. Alternatively, the
transformer will automatically select and transform all numerical
variables.
More details in the :ref:`User Guide <reciprocal>`.
Parameters
----------
{variables}
Attributes
----------
{variables_}
{feature_names_in_}
{n_features_in_}
Methods
-------
{fit}
{fit_transform}
{inverse_transform}
transform:
Apply the reciprocal 1 / x transformation.
Examples
--------
>>> import numpy as np
>>> import pandas as pd
>>> from feature_engine.transformation import ReciprocalTransformer
>>> np.random.seed(42)
>>> X = pd.DataFrame(dict(x = 10 - np.random.exponential(size = 100)))
>>> rt = ReciprocalTransformer()
>>> rt.fit(X)
>>> X = rt.transform(X)
>>> X.head()
x
0 0.104924
1 0.143064
2 0.115164
3 0.110047
4 0.101726
"""
def __init__(
self, variables: Union[None, int, str, List[Union[str, int]]] = None
) -> None:
self.variables = _check_variables_input_value(variables)
[文档] def fit(self, X: pd.DataFrame, y: Optional[pd.Series] = None):
"""
This transformer does not learn parameters.
Parameters
----------
X: Pandas DataFrame of shape = [n_samples, n_features].
The training input samples. Can be the entire dataframe, not just the
variables to transform.
y: pandas Series, default=None
It is not needed in this transformer. You can pass y or None.
"""
# check input dataframe
X = super().fit(X)
# check if the variables contain the value 0
if (X[self.variables_] == 0).any().any():
raise ValueError(
"Some variables contain the value zero, can't apply reciprocal "
"transformation."
)
return self
[文档] def transform(self, X: pd.DataFrame) -> pd.DataFrame:
"""
Apply the reciprocal 1 / x transformation.
Parameters
----------
X: Pandas DataFrame of shape = [n_samples, n_features]
The data to be transformed.
Returns
-------
X_new: pandas dataframe
The dataframe with the transformed variables.
"""
# check input dataframe and if class was fitted
X = self._check_transform_input_and_state(X)
# check if the variables contain the value 0
if (X[self.variables_] == 0).any().any():
raise ValueError(
"Some variables contain the value zero, can't apply reciprocal "
"transformation."
)
# transform
X[self.variables_] = X[self.variables_].astype(float)
X.loc[:, self.variables_] = 1 / X.loc[:, self.variables_]
return X
[文档] def inverse_transform(self, X: pd.DataFrame) -> pd.DataFrame:
"""
Convert the data back to the original representation.
Parameters
----------
X: Pandas DataFrame of shape = [n_samples, n_features]
The data to be transformed.
Returns
-------
X_tr: pandas dataframe
The dataframe with the transformed variables.
"""
# inverse_transform
return self.transform(X)
def _more_tags(self):
tags_dict = _return_tags()
tags_dict["variables"] = "numerical"
# ======= this tests fail because the transformers throw an error
# when the values are 0. Nothing to do with the test itself but
# mostly with the data created and used in the test
msg = (
"transformers raise errors when data contains zeroes, thus this check fails"
)
tags_dict["_xfail_checks"]["check_estimators_dtypes"] = msg
tags_dict["_xfail_checks"]["check_estimators_fit_returns_self"] = msg
tags_dict["_xfail_checks"]["check_pipeline_consistency"] = msg
tags_dict["_xfail_checks"]["check_estimators_overwrite_params"] = msg
tags_dict["_xfail_checks"]["check_estimators_pickle"] = msg
tags_dict["_xfail_checks"]["check_transformer_general"] = msg
return tags_dict