langchain_community.embeddings.infinity ηš„ζΊδ»£η 

"""written under MIT Licence, Michael Feil 2023."""

import asyncio
from concurrent.futures import ThreadPoolExecutor
from typing import Any, Callable, Dict, List, Optional, Tuple

import aiohttp
import numpy as np
import requests
from langchain_core.embeddings import Embeddings
from langchain_core.utils import get_from_dict_or_env
from pydantic import BaseModel, ConfigDict, model_validator

__all__ = ["InfinityEmbeddings"]


[docs] class InfinityEmbeddings(BaseModel, Embeddings): """Self-hosted embedding models for `infinity` package. See https://github.com/michaelfeil/infinity This also works for text-embeddings-inference and other self-hosted openai-compatible servers. Infinity is a package to interact with Embedding Models on https://github.com/michaelfeil/infinity Example: .. code-block:: python from langchain_community.embeddings import InfinityEmbeddings InfinityEmbeddings( model="BAAI/bge-small", infinity_api_url="http://localhost:7997", ) """ model: str "Underlying Infinity model id." infinity_api_url: str = "http://localhost:7997" """Endpoint URL to use.""" client: Any = None #: :meta private: """Infinity client.""" # LLM call kwargs model_config = ConfigDict( extra="forbid", ) @model_validator(mode="before") @classmethod def validate_environment(cls, values: Dict) -> Any: """Validate that api key and python package exists in environment.""" values["infinity_api_url"] = get_from_dict_or_env( values, "infinity_api_url", "INFINITY_API_URL" ) values["client"] = TinyAsyncOpenAIInfinityEmbeddingClient( host=values["infinity_api_url"], ) return values
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Call out to Infinity's embedding endpoint. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ embeddings = self.client.embed( model=self.model, texts=texts, ) return embeddings
[docs] async def aembed_documents(self, texts: List[str]) -> List[List[float]]: """Async call out to Infinity's embedding endpoint. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ embeddings = await self.client.aembed( model=self.model, texts=texts, ) return embeddings
[docs] def embed_query(self, text: str) -> List[float]: """Call out to Infinity's embedding endpoint. Args: text: The text to embed. Returns: Embeddings for the text. """ return self.embed_documents([text])[0]
[docs] async def aembed_query(self, text: str) -> List[float]: """Async call out to Infinity's embedding endpoint. Args: text: The text to embed. Returns: Embeddings for the text. """ embeddings = await self.aembed_documents([text]) return embeddings[0]
[docs] class TinyAsyncOpenAIInfinityEmbeddingClient: #: :meta private: """Helper tool to embed Infinity. It is not a part of Langchain's stable API, direct use discouraged. Example: .. code-block:: python mini_client = TinyAsyncInfinityEmbeddingClient( ) embeds = mini_client.embed( model="BAAI/bge-small", text=["doc1", "doc2"] ) # or embeds = await mini_client.aembed( model="BAAI/bge-small", text=["doc1", "doc2"] ) """
[docs] def __init__( self, host: str = "http://localhost:7797/v1", aiosession: Optional[aiohttp.ClientSession] = None, ) -> None: self.host = host self.aiosession = aiosession if self.host is None or len(self.host) < 3: raise ValueError(" param `host` must be set to a valid url") self._batch_size = 128
@staticmethod def _permute( texts: List[str], sorter: Callable = len ) -> Tuple[List[str], Callable]: """Sort texts in ascending order, and delivers a lambda expr, which can sort a same length list https://github.com/UKPLab/sentence-transformers/blob/ c5f93f70eca933c78695c5bc686ceda59651ae3b/sentence_transformers/SentenceTransformer.py#L156 Args: texts (List[str]): _description_ sorter (Callable, optional): _description_. Defaults to len. Returns: Tuple[List[str], Callable]: _description_ Example: ``` texts = ["one","three","four"] perm_texts, undo = self._permute(texts) texts == undo(perm_texts) ``` """ if len(texts) == 1: # special case query return texts, lambda t: t length_sorted_idx = np.argsort([-sorter(sen) for sen in texts]) texts_sorted = [texts[idx] for idx in length_sorted_idx] return texts_sorted, lambda unsorted_embeddings: [ # E731 unsorted_embeddings[idx] for idx in np.argsort(length_sorted_idx) ] def _batch(self, texts: List[str]) -> List[List[str]]: """ splits Lists of text parts into batches of size max `self._batch_size` When encoding vector database, Args: texts (List[str]): List of sentences self._batch_size (int, optional): max batch size of one request. Returns: List[List[str]]: Batches of List of sentences """ if len(texts) == 1: # special case query return [texts] batches = [] for start_index in range(0, len(texts), self._batch_size): batches.append(texts[start_index : start_index + self._batch_size]) return batches @staticmethod def _unbatch(batch_of_texts: List[List[Any]]) -> List[Any]: if len(batch_of_texts) == 1 and len(batch_of_texts[0]) == 1: # special case query return batch_of_texts[0] texts = [] for sublist in batch_of_texts: texts.extend(sublist) return texts def _kwargs_post_request(self, model: str, texts: List[str]) -> Dict[str, Any]: """Build the kwargs for the Post request, used by sync Args: model (str): _description_ texts (List[str]): _description_ Returns: Dict[str, Collection[str]]: _description_ """ return dict( url=f"{self.host}/embeddings", headers={ # "accept": "application/json", "content-type": "application/json", }, json=dict( input=texts, model=model, ), ) def _sync_request_embed( self, model: str, batch_texts: List[str] ) -> List[List[float]]: response = requests.post( **self._kwargs_post_request(model=model, texts=batch_texts) ) if response.status_code != 200: raise Exception( f"Infinity returned an unexpected response with status " f"{response.status_code}: {response.text}" ) return [e["embedding"] for e in response.json()["data"]]
[docs] def embed(self, model: str, texts: List[str]) -> List[List[float]]: """call the embedding of model Args: model (str): to embedding model texts (List[str]): List of sentences to embed. Returns: List[List[float]]: List of vectors for each sentence """ perm_texts, unpermute_func = self._permute(texts) perm_texts_batched = self._batch(perm_texts) # Request map_args = ( self._sync_request_embed, [model] * len(perm_texts_batched), perm_texts_batched, ) if len(perm_texts_batched) == 1: embeddings_batch_perm = list(map(*map_args)) else: with ThreadPoolExecutor(32) as p: embeddings_batch_perm = list(p.map(*map_args)) embeddings_perm = self._unbatch(embeddings_batch_perm) embeddings = unpermute_func(embeddings_perm) return embeddings
async def _async_request( self, session: aiohttp.ClientSession, kwargs: Dict[str, Any] ) -> List[List[float]]: async with session.post(**kwargs) as response: if response.status != 200: raise Exception( f"Infinity returned an unexpected response with status " f"{response.status}: {response.text}" ) embedding = (await response.json())["data"] return [e["embedding"] for e in embedding]
[docs] async def aembed(self, model: str, texts: List[str]) -> List[List[float]]: """call the embedding of model, async method Args: model (str): to embedding model texts (List[str]): List of sentences to embed. Returns: List[List[float]]: List of vectors for each sentence """ perm_texts, unpermute_func = self._permute(texts) perm_texts_batched = self._batch(perm_texts) # Request async with aiohttp.ClientSession( trust_env=True, connector=aiohttp.TCPConnector(limit=32) ) as session: embeddings_batch_perm = await asyncio.gather( *[ self._async_request( session=session, kwargs=self._kwargs_post_request(model=model, texts=t), ) for t in perm_texts_batched ] ) embeddings_perm = self._unbatch(embeddings_batch_perm) embeddings = unpermute_func(embeddings_perm) return embeddings