create_structured_output_runnable#
- langchain_community.chains.ernie_functions.base.create_structured_output_runnable(output_schema: Dict[str, Any] | Type[BaseModel], llm: Runnable, prompt: BasePromptTemplate, *, output_parser: BaseOutputParser | BaseGenerationOutputParser | None = None, **kwargs: Any) Runnable [source]#
创建一个可运行的程序,使用Ernie函数来获取结构化输出。
- Parameters:
output_schema (Dict[str, Any] | Type[BaseModel]) – 可以是一个字典或pydantic.BaseModel类。如果传入的是字典, 则假定它已经是有效的JsonSchema。 为了获得最佳效果,pydantic.BaseModels应该包含描述模式表示内容的文档字符串以及参数的描述。
llm (Runnable) – 使用的语言模型,假设支持Ernie函数调用API。
prompt (BasePromptTemplate) – 传递给模型的BasePromptTemplate。
output_parser (BaseOutputParser | BaseGenerationOutputParser | None) – 用于解析模型输出的BaseLLMOutputParser。默认情况下,将从函数类型推断。如果传递了pydantic.BaseModels,则OutputParser将尝试使用这些模型解析输出。否则,模型输出将简单地解析为JSON。
kwargs (Any)
- Returns:
一个可运行的序列,当运行时将把给定的函数传递给模型。
- Return type:
示例
from typing import Optional from langchain.chains.ernie_functions import create_structured_output_chain from langchain_community.chat_models import ErnieBotChat from langchain_core.prompts import ChatPromptTemplate from pydantic import BaseModel, Field class Dog(BaseModel): """Identifying information about a dog.""" name: str = Field(..., description="The dog's name") color: str = Field(..., description="The dog's color") fav_food: Optional[str] = Field(None, description="The dog's favorite food") llm = ErnieBotChat(model_name="ERNIE-Bot-4") prompt = ChatPromptTemplate.from_messages( [ ("user", "Use the given format to extract information from the following input: {input}"), ("assistant", "OK!"), ("user", "Tip: Make sure to answer in the correct format"), ] ) chain = create_structured_output_chain(Dog, llm, prompt) chain.invoke({"input": "Harry was a chubby brown beagle who loved chicken"}) # -> Dog(name="Harry", color="brown", fav_food="chicken")