OpenCLIPEmbeddings#

class langchain_experimental.open_clip.open_clip.OpenCLIPEmbeddings[来源]#

基础类:BaseModel, Embeddings

OpenCLIP 嵌入模型。

通过解析和验证来自关键字参数的输入数据来创建一个新模型。

如果输入数据无法验证以形成有效模型,则引发 [ValidationError][pydantic_core.ValidationError]。

self 被显式地设为仅位置参数,以允许 self 作为字段名称。

param checkpoint: str = 'laion2b_s32b_b79k'#
param model: Any [Required]#
param model_name: str = 'ViT-H-14'#
param preprocess: Any [Required]#
param tokenizer: Any [Required]#
async aembed_documents(texts: list[str]) list[list[float]]#

异步嵌入搜索文档。

Parameters:

文本 (列表[字符串]) – 要嵌入的文本列表。

Returns:

嵌入列表。

Return type:

列表[列表[浮点数]]

async aembed_query(text: str) list[float]#

异步嵌入查询文本。

Parameters:

文本 (str) – 要嵌入的文本。

Returns:

嵌入。

Return type:

列表[浮点数]

embed_documents(texts: List[str]) List[List[float]][source]#

嵌入搜索文档。

Parameters:

文本 (列表[字符串]) – 要嵌入的文本列表。

Returns:

嵌入列表。

Return type:

列表[列表[float]]

embed_image(uris: List[str]) List[List[float]][source]#
Parameters:

uris (列表[字符串])

Return type:

列表[列表[float]]

embed_query(text: str) List[float][source]#

嵌入查询文本。

Parameters:

文本 (str) – 要嵌入的文本。

Returns:

嵌入。

Return type:

列表[float]

使用 OpenCLIPEmbeddings 的示例