向量SQL数据库链#

class langchain_experimental.sql.vector_sql.VectorSQLDatabaseChain[来源]#

基础类: SQLDatabaseChain

用于与Vector SQL数据库交互的链。

示例

from langchain_experimental.sql import SQLDatabaseChain
from langchain_community.llms import OpenAI, SQLDatabase, OpenAIEmbeddings
db = SQLDatabase(...)
db_chain = VectorSQLDatabaseChain.from_llm(OpenAI(), db, OpenAIEmbeddings())
Security note: Make sure that the database connection uses credentials

这些权限范围狭窄,仅包括此链所需的权限。 如果不这样做,可能会导致数据损坏或丢失,因为此链可能会在适当提示下尝试执行诸如DROP TABLEINSERT等命令。 防止此类负面结果的最佳方法是(根据情况)限制授予与此链一起使用的凭据的权限。 如果不采取这些步骤,此问题展示了一个负面结果的示例: langchain-ai/langchain#5923

注意

VectorSQLDatabaseChain 实现了标准的 Runnable Interface。🏃

Runnable Interface 接口在可运行对象上提供了额外的方法,例如 with_types, with_retry, assign, bind, get_graph, 等等。

param callback_manager: BaseCallbackManager | None = None#

[已弃用] 请使用 callbacks 代替。

param callbacks: Callbacks = None#

可选的回调处理程序(或回调管理器)列表。默认为None。 回调处理程序在调用链的整个生命周期中被调用, 从on_chain_start开始,到on_chain_end或on_chain_error结束。 每个自定义链可以选择性地调用额外的回调方法,详情请参阅Callback文档。

param database: SQLDatabase [Required]#

要连接的SQL数据库。

param llm: BaseLanguageModel | None = None#

[已弃用] 使用的LLM包装器。

param llm_chain: LLMChain [Required]#
param memory: BaseMemory | None = None#

可选的内存对象。默认为None。 Memory是一个在每条链的开始和结束时被调用的类。在开始时,内存加载变量并将它们传递到链中。在结束时,它保存任何返回的变量。 有许多不同类型的内存 - 请参阅内存文档以获取完整目录。

param metadata: Dict[str, Any] | None = None#

与链关联的可选元数据。默认为None。 此元数据将与每次调用此链相关联, 并作为参数传递给callbacks中定义的处理程序。 您可以使用这些元数据来识别具有特定用例的链实例。

param native_format: bool = False#

如果 return_direct,控制是否以 Python 原生格式返回

param prompt: BasePromptTemplate | None = None#

[已弃用] 用于将自然语言翻译为SQL的提示。

param query_checker_prompt: BasePromptTemplate | None = None#

查询检查器应使用的提示模板

param return_direct: bool = False#

是否直接返回查询SQL表的结果。

param return_intermediate_steps: bool = False#

是否返回中间步骤以及最终答案。

param return_sql: bool = False#

将直接返回SQL命令而不执行它

param sql_cmd_parser: VectorSQLOutputParser [Required]#

向量SQL解析器

param tags: List[str] | None = None#

与链关联的可选标签列表。默认为None。 这些标签将与每次调用此链相关联, 并作为参数传递给callbacks中定义的处理程序。 您可以使用这些标签来识别具有特定用例的链实例。

param top_k: int = 5#

从查询返回的结果数量

param use_query_checker: bool = False#

是否应使用查询检查工具尝试修复来自LLM的初始SQL。

param verbose: bool [Optional]#

是否以详细模式运行。在详细模式下,一些中间日志将被打印到控制台。默认为全局verbose值,可通过langchain.globals.get_verbose()访问。

__call__(inputs: Dict[str, Any] | Any, return_only_outputs: bool = False, callbacks: list[BaseCallbackHandler] | BaseCallbackManager | None = None, *, tags: List[str] | None = None, metadata: Dict[str, Any] | None = None, run_name: str | None = None, include_run_info: bool = False) Dict[str, Any]#

自版本0.1.0起已弃用:请改用invoke()。在langchain==1.0之前不会移除。

执行链。

Parameters:
  • inputs (Dict[str, Any] | Any) – 输入的字典,如果链只期望一个参数,则为单个输入。应包含在Chain.input_keys中指定的所有输入,除了将由链的内存设置的输入。

  • return_only_outputs (bool) – 是否仅在响应中返回输出。如果为True,则仅返回此链生成的新键。如果为False,则返回输入键和此链生成的新键。默认为False。

  • callbacks (list[BaseCallbackHandler] | BaseCallbackManager | None) – 用于此链运行的回调。这些回调将在构造期间传递给链的回调之外调用,但只有这些运行时回调会传播到对其他对象的调用中。

  • tags (List[str] | None) – 传递给所有回调的字符串标签列表。这些标签将与在构造期间传递给链的标签一起传递,但只有这些运行时标签会传播到对其他对象的调用中。

  • metadata (Dict[str, Any] | None) – 可选的与链相关的元数据。默认为 None

  • include_run_info (bool) – 是否在响应中包含运行信息。默认为False。

  • run_name (str | None)

Returns:

一个包含命名输出的字典。应包含所有在

Chain.output_keys中指定的输出。

Return type:

Dict[str, Any]

async abatch(inputs: list[Input], config: RunnableConfig | list[RunnableConfig] | None = None, *, return_exceptions: bool = False, **kwargs: Any | None) list[Output]#

默认实现使用asyncio.gather并行运行ainvoke。

batch的默认实现对于IO绑定的runnables效果很好。

如果子类能够更高效地进行批处理,则应重写此方法; 例如,如果底层的Runnable使用支持批处理模式的API。

Parameters:
  • inputs (list[Input]) – Runnable 的输入列表。

  • config (RunnableConfig | list[RunnableConfig] | None) – 调用Runnable时使用的配置。 该配置支持标准键,如用于跟踪目的的‘tags’、‘metadata’,用于控制并行工作量的‘max_concurrency’,以及其他键。更多详情请参考RunnableConfig。默认为None。

  • return_exceptions (bool) – 是否返回异常而不是抛出它们。默认为 False。

  • kwargs (Any | None) – 传递给Runnable的额外关键字参数。

Returns:

Runnable 的输出列表。

Return type:

列表[输出]

async abatch_as_completed(inputs: Sequence[Input], config: RunnableConfig | Sequence[RunnableConfig] | None = None, *, return_exceptions: bool = False, **kwargs: Any | None) AsyncIterator[tuple[int, Output | Exception]]#

在输入列表上并行运行ainvoke,在它们完成时产生结果。

Parameters:
  • inputs (Sequence[Input]) – Runnable 的输入列表。

  • config (RunnableConfig | Sequence[RunnableConfig] | None) – 调用Runnable时使用的配置。 该配置支持标准键,如用于跟踪目的的'tags'、'metadata',用于控制并行工作量的'max_concurrency',以及其他键。有关更多详细信息,请参阅RunnableConfig。默认为None。默认为None。

  • return_exceptions (bool) – 是否返回异常而不是抛出它们。默认为 False。

  • kwargs (Any | None) – 传递给Runnable的额外关键字参数。

Yields:

输入索引和Runnable输出的元组。

Return type:

AsyncIterator[元组[int, Output | 异常]]

async acall(inputs: Dict[str, Any] | Any, return_only_outputs: bool = False, callbacks: list[BaseCallbackHandler] | BaseCallbackManager | None = None, *, tags: List[str] | None = None, metadata: Dict[str, Any] | None = None, run_name: str | None = None, include_run_info: bool = False) Dict[str, Any]#

自版本0.1.0起已弃用:请改用ainvoke()。在langchain==1.0之前不会移除。

异步执行链。

Parameters:
  • inputs (Dict[str, Any] | Any) – 输入的字典,如果链只期望一个参数,则为单个输入。应包含在Chain.input_keys中指定的所有输入,除了将由链的内存设置的输入。

  • return_only_outputs (bool) – 是否仅在响应中返回输出。如果为True,则仅返回此链生成的新键。如果为False,则返回输入键和此链生成的新键。默认为False。

  • callbacks (list[BaseCallbackHandler] | BaseCallbackManager | None) – 用于此链运行的回调。这些回调将在构造期间传递给链的回调之外调用,但只有这些运行时回调会传播到对其他对象的调用中。

  • tags (List[str] | None) – 传递给所有回调的字符串标签列表。这些标签将与在构造期间传递给链的标签一起传递,但只有这些运行时标签会传播到对其他对象的调用中。

  • metadata (Dict[str, Any] | None) – 可选的与链相关的元数据。默认为 None

  • include_run_info (bool) – 是否在响应中包含运行信息。默认为False。

  • run_name (str | None)

Returns:

一个包含命名输出的字典。应包含所有在

Chain.output_keys中指定的输出。

Return type:

Dict[str, Any]

async ainvoke(input: Dict[str, Any], config: RunnableConfig | None = None, **kwargs: Any) Dict[str, Any]#

ainvoke的默认实现,从线程调用invoke。

默认实现允许使用异步代码,即使Runnable没有实现本地的异步版本的invoke。

如果子类可以异步运行,则应重写此方法。

Parameters:
  • 输入 (字典[字符串, 任意类型])

  • config (RunnableConfig | None)

  • kwargs (Any)

Return type:

Dict[str, Any]

apply(input_list: List[Dict[str, Any]], callbacks: list[BaseCallbackHandler] | BaseCallbackManager | None = None) List[Dict[str, str]]#

自版本0.1.0起已弃用:请改用batch()。在langchain==1.0之前不会移除。

在列表中的所有输入上调用链。

Parameters:
Return type:

列表[字典[str, str]]

async aprep_inputs(inputs: Dict[str, Any] | Any) Dict[str, str]#

准备链输入,包括从内存中添加输入。

Parameters:

inputs (Dict[str, Any] | Any) – 原始输入的字典,如果链只期望一个参数,则为单个输入。应包含在Chain.input_keys中指定的所有输入,除了将由链的内存设置的输入。

Returns:

所有输入的字典,包括由链的内存添加的那些。

Return type:

字典[str, str]

async aprep_outputs(inputs: Dict[str, str], outputs: Dict[str, str], return_only_outputs: bool = False) Dict[str, str]#

验证并准备链输出,并将此运行的信息保存到内存中。

Parameters:
  • inputs (Dict[str, str]) – 链输入的字典,包括由链内存添加的任何输入。

  • outputs (Dict[str, str]) – 初始链输出的字典。

  • return_only_outputs (bool) – 是否仅返回链的输出。如果为False,输入也会添加到最终输出中。

Returns:

最终链输出的字典。

Return type:

字典[str, str]

async arun(*args: Any, callbacks: list[BaseCallbackHandler] | BaseCallbackManager | None = None, tags: List[str] | None = None, metadata: Dict[str, Any] | None = None, **kwargs: Any) Any#

自版本0.1.0起已弃用:请改用ainvoke()。在langchain==1.0之前不会移除。

执行链的便捷方法。

此方法与Chain.__call__的主要区别在于,此方法期望输入直接作为位置参数或关键字参数传递,而Chain.__call__期望一个包含所有输入的单一输入字典

Parameters:
  • *args (Any) – 如果链期望单个输入,则可以将其作为唯一的位置参数传递。

  • callbacks (list[BaseCallbackHandler] | BaseCallbackManager | None) – 用于此链运行的回调。这些回调将在构造期间传递给链的回调之外调用,但只有这些运行时回调会传播到对其他对象的调用中。

  • tags (List[str] | None) – 传递给所有回调的字符串标签列表。这些标签将与在构造期间传递给链的标签一起传递,但只有这些运行时标签会传播到对其他对象的调用中。

  • **kwargs (Any) – 如果链期望多个输入,它们可以直接作为关键字参数传递。

  • metadata (Dict[str, Any] | None)

  • **kwargs

Returns:

链式输出。

Return type:

任何

示例

# Suppose we have a single-input chain that takes a 'question' string:
await chain.arun("What's the temperature in Boise, Idaho?")
# -> "The temperature in Boise is..."

# Suppose we have a multi-input chain that takes a 'question' string
# and 'context' string:
question = "What's the temperature in Boise, Idaho?"
context = "Weather report for Boise, Idaho on 07/03/23..."
await chain.arun(question=question, context=context)
# -> "The temperature in Boise is..."
async astream(input: Input, config: RunnableConfig | None = None, **kwargs: Any | None) AsyncIterator[Output]#

astream的默认实现,调用ainvoke。 如果子类支持流式输出,则应重写此方法。

Parameters:
  • input (Input) – Runnable 的输入。

  • config (RunnableConfig | None) – 用于Runnable的配置。默认为None。

  • kwargs (Any | None) – 传递给Runnable的额外关键字参数。

Yields:

Runnable 的输出。

Return type:

AsyncIterator[Output]

async astream_events(input: Any, config: RunnableConfig | None = None, *, version: Literal['v1', 'v2'], include_names: Sequence[str] | None = None, include_types: Sequence[str] | None = None, include_tags: Sequence[str] | None = None, exclude_names: Sequence[str] | None = None, exclude_types: Sequence[str] | None = None, exclude_tags: Sequence[str] | None = None, **kwargs: Any) AsyncIterator[StandardStreamEvent | CustomStreamEvent]#

生成事件流。

用于创建一个迭代器,遍历提供实时信息的StreamEvents,包括来自中间结果的StreamEvents。

StreamEvent 是一个具有以下模式的字典:

  • event: str - 事件名称的格式为

    格式: on_[runnable_type]_(start|stream|end).

  • name: str - 生成事件的 Runnable 的名称。

  • run_id: str - 与给定执行相关联的随机生成的ID

    发出事件的Runnable。 作为父Runnable执行的一部分被调用的子Runnable会被分配其自己唯一的ID。

  • parent_ids: List[str] - 生成事件的父可运行对象的ID。

    根可运行对象将有一个空列表。 父ID的顺序是从根到直接父对象。 仅适用于API的v2版本。API的v1版本将返回一个空列表。

  • tags: Optional[List[str]] - 生成事件的Runnable的标签

    事件。

  • metadata: Optional[Dict[str, Any]] - Runnable的元数据

    生成事件的元数据。

  • data: Dict[str, Any]

下表展示了一些可能由不同链发出的事件。为了简洁起见,表中省略了元数据字段。链定义已包含在表后。

注意 此参考表适用于V2版本的架构。

事件

名称

输入

输出

on_chat_model_start

[模型名称]

{“messages”: [[SystemMessage, HumanMessage]]}

on_chat_model_stream

[model name]

AIMessageChunk(content=”hello”)

on_chat_model_end

[model name]

{“messages”: [[SystemMessage, HumanMessage]]}

AIMessageChunk(content=”hello world”)

on_llm_start

[model name]

{‘input’: ‘hello’}

on_llm_stream

[模型名称]

‘Hello’

on_llm_end

[model name]

‘你好,人类!’

链上开始

格式化文档

on_chain_stream

format_docs

“你好世界!,再见世界!”

on_chain_end

format_docs

[Document(…)]

“你好世界!,再见世界!”

on_tool_start

some_tool

{“x”: 1, “y”: “2”}

on_tool_end

some_tool

{“x”: 1, “y”: “2”}

on_retriever_start

[retriever name]

{“query”: “hello”}

on_retriever_end

[retriever name]

{“query”: “hello”}

[Document(…), ..]

on_prompt_start

[template_name]

{“question”: “hello”}

on_prompt_end

[template_name]

{“question”: “hello”}

ChatPromptValue(messages: [SystemMessage, …])

除了标准事件外,用户还可以派发自定义事件(见下面的示例)。

自定义事件将仅在API的v2版本中显示!

自定义事件具有以下格式:

属性

类型

描述

name

str

用户定义的事件名称。

data

Any

与事件相关的数据。这可以是任何内容,但我们建议使其可JSON序列化。

以下是上述标准事件相关的声明:

format_docs:

def format_docs(docs: List[Document]) -> str:
    '''Format the docs.'''
    return ", ".join([doc.page_content for doc in docs])

format_docs = RunnableLambda(format_docs)

some_tool:

@tool
def some_tool(x: int, y: str) -> dict:
    '''Some_tool.'''
    return {"x": x, "y": y}

提示:

template = ChatPromptTemplate.from_messages(
    [("system", "You are Cat Agent 007"), ("human", "{question}")]
).with_config({"run_name": "my_template", "tags": ["my_template"]})

示例:

from langchain_core.runnables import RunnableLambda

async def reverse(s: str) -> str:
    return s[::-1]

chain = RunnableLambda(func=reverse)

events = [
    event async for event in chain.astream_events("hello", version="v2")
]

# will produce the following events (run_id, and parent_ids
# has been omitted for brevity):
[
    {
        "data": {"input": "hello"},
        "event": "on_chain_start",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"chunk": "olleh"},
        "event": "on_chain_stream",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"output": "olleh"},
        "event": "on_chain_end",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
]

示例:分发自定义事件

from langchain_core.callbacks.manager import (
    adispatch_custom_event,
)
from langchain_core.runnables import RunnableLambda, RunnableConfig
import asyncio


async def slow_thing(some_input: str, config: RunnableConfig) -> str:
    """Do something that takes a long time."""
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 1 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 2 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    return "Done"

slow_thing = RunnableLambda(slow_thing)

async for event in slow_thing.astream_events("some_input", version="v2"):
    print(event)
Parameters:
  • input (Any) – Runnable 的输入。

  • config (RunnableConfig | None) – 用于Runnable的配置。

  • version (Literal['v1', 'v2']) – 使用的模式版本,可以是 v2v1。 用户应使用 v2v1 是为了向后兼容,将在 0.4.0 版本中弃用。 在 API 稳定之前不会分配默认值。 自定义事件仅在 v2 中显示。

  • include_names (Sequence[str] | None) – 仅包含来自具有匹配名称的可运行对象的事件。

  • include_types (Sequence[str] | None) – 仅包含来自具有匹配类型的可运行对象的事件。

  • include_tags (Sequence[str] | None) – 仅包含具有匹配标签的可运行对象的事件。

  • exclude_names (Sequence[str] | None) – 排除具有匹配名称的可运行对象的事件。

  • exclude_types (Sequence[str] | None) – 排除具有匹配类型的可运行对象的事件。

  • exclude_tags (Sequence[str] | None) – 排除具有匹配标签的可运行对象的事件。

  • kwargs (Any) – 传递给 Runnable 的额外关键字参数。 这些参数将传递给 astream_log,因为 astream_events 的实现是基于 astream_log 的。

Yields:

一个异步的StreamEvents流。

Raises:

NotImplementedError – 如果版本不是v1v2

Return type:

AsyncIterator[StandardStreamEvent | CustomStreamEvent]

batch(inputs: list[Input], config: RunnableConfig | list[RunnableConfig] | None = None, *, return_exceptions: bool = False, **kwargs: Any | None) list[Output]#

默认实现使用线程池执行器并行运行invoke。

batch的默认实现对于IO绑定的runnables效果很好。

如果子类能够更高效地进行批处理,则应重写此方法; 例如,如果底层的Runnable使用支持批处理模式的API。

Parameters:
Return type:

列表[输出]

batch_as_completed(inputs: Sequence[Input], config: RunnableConfig | Sequence[RunnableConfig] | None = None, *, return_exceptions: bool = False, **kwargs: Any | None) Iterator[tuple[int, Output | Exception]]#

在输入列表上并行运行invoke,在它们完成时产生结果。

Parameters:
Return type:

Iterator[元组[int, Output | 异常]]

bind(**kwargs: Any) Runnable[Input, Output]#

将参数绑定到Runnable,返回一个新的Runnable。

当链中的Runnable需要一个不在前一个Runnable输出中或用户输入中的参数时,这很有用。

Parameters:

kwargs (Any) – 绑定到Runnable的参数。

Returns:

一个新的Runnable,参数已绑定。

Return type:

Runnable[Input, Output]

示例:

from langchain_community.chat_models import ChatOllama
from langchain_core.output_parsers import StrOutputParser

llm = ChatOllama(model='llama2')

# Without bind.
chain = (
    llm
    | StrOutputParser()
)

chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two three four five.'

# With bind.
chain = (
    llm.bind(stop=["three"])
    | StrOutputParser()
)

chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two'
configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Runnable[Input, Output] | Callable[[], Runnable[Input, Output]]) RunnableSerializable#

配置可以在运行时设置的Runnables的替代方案。

Parameters:
  • which (ConfigurableField) – 将用于选择替代项的ConfigurableField实例。

  • default_key (str) – 如果没有选择其他选项,则使用的默认键。 默认为“default”。

  • prefix_keys (bool) – 是否在键前加上 ConfigurableField 的 id。 默认为 False。

  • **kwargs (Runnable[Input, Output] | Callable[[], Runnable[Input, Output]]) – 一个字典,键为Runnable实例或返回Runnable实例的可调用对象。

Returns:

一个新的Runnable,配置了替代方案。

Return type:

RunnableSerializable

from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatAnthropic(
    model_name="claude-3-sonnet-20240229"
).configurable_alternatives(
    ConfigurableField(id="llm"),
    default_key="anthropic",
    openai=ChatOpenAI()
)

# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)

# uses ChatOpenAI
print(
    model.with_config(
        configurable={"llm": "openai"}
    ).invoke("which organization created you?").content
)
configurable_fields(**kwargs: ConfigurableField | ConfigurableFieldSingleOption | ConfigurableFieldMultiOption) RunnableSerializable#

在运行时配置特定的Runnable字段。

Parameters:

**kwargs (ConfigurableField | ConfigurableFieldSingleOption | ConfigurableFieldMultiOption) – 一个包含ConfigurableField实例的字典,用于配置。

Returns:

一个新的Runnable,其字段已配置。

Return type:

RunnableSerializable

from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatOpenAI(max_tokens=20).configurable_fields(
    max_tokens=ConfigurableField(
        id="output_token_number",
        name="Max tokens in the output",
        description="The maximum number of tokens in the output",
    )
)

# max_tokens = 20
print(
    "max_tokens_20: ",
    model.invoke("tell me something about chess").content
)

# max_tokens = 200
print("max_tokens_200: ", model.with_config(
    configurable={"output_token_number": 200}
    ).invoke("tell me something about chess").content
)
classmethod from_llm(llm: BaseLanguageModel, db: SQLDatabase, prompt: BasePromptTemplate | None = None, sql_cmd_parser: VectorSQLOutputParser | None = None, **kwargs: Any) VectorSQLDatabaseChain[来源]#

从LLM和数据库连接创建一个SQLDatabaseChain。

Security note: Make sure that the database connection uses credentials

这些权限范围狭窄,仅包括此链所需的权限。 如果不这样做,可能会导致数据损坏或丢失,因为此链可能会在适当提示下尝试执行诸如DROP TABLEINSERT等命令。 防止此类负面结果的最佳方法是(根据情况)限制授予与此链一起使用的凭据的权限。 如果不采取这些步骤,此问题展示了一个负面结果的示例: langchain-ai/langchain#5923

Parameters:
Return type:

VectorSQLDatabaseChain

invoke(input: Dict[str, Any], config: RunnableConfig | None = None, **kwargs: Any) Dict[str, Any]#

将单个输入转换为输出。重写以实现。

Parameters:
  • input (Dict[str, Any]) – Runnable 的输入。

  • config (RunnableConfig | None) – 调用Runnable时使用的配置。 该配置支持标准键,如用于跟踪目的的‘tags’、‘metadata’,用于控制并行工作量的‘max_concurrency’,以及其他键。更多详情请参考RunnableConfig。

  • kwargs (Any)

Returns:

Runnable 的输出。

Return type:

Dict[str, Any]

prep_inputs(inputs: Dict[str, Any] | Any) Dict[str, str]#

准备链输入,包括从内存中添加输入。

Parameters:

inputs (Dict[str, Any] | Any) – 原始输入的字典,如果链只期望一个参数,则为单个输入。应包含在Chain.input_keys中指定的所有输入,除了将由链的内存设置的输入。

Returns:

所有输入的字典,包括由链的内存添加的那些。

Return type:

字典[str, str]

prep_outputs(inputs: Dict[str, str], outputs: Dict[str, str], return_only_outputs: bool = False) Dict[str, str]#

验证并准备链输出,并将此运行的信息保存到内存中。

Parameters:
  • inputs (Dict[str, str]) – 链输入的字典,包括由链内存添加的任何输入。

  • outputs (Dict[str, str]) – 初始链输出的字典。

  • return_only_outputs (bool) – 是否仅返回链的输出。如果为False,输入也会添加到最终输出中。

Returns:

最终链输出的字典。

Return type:

字典[str, str]

run(*args: Any, callbacks: list[BaseCallbackHandler] | BaseCallbackManager | None = None, tags: List[str] | None = None, metadata: Dict[str, Any] | None = None, **kwargs: Any) Any#

自版本0.1.0起已弃用:请改用invoke()。在langchain==1.0之前不会移除。

执行链的便捷方法。

此方法与Chain.__call__的主要区别在于,此方法期望输入直接作为位置参数或关键字参数传递,而Chain.__call__期望一个包含所有输入的单一输入字典

Parameters:
  • *args (Any) – 如果链期望单个输入,则可以将其作为唯一的位置参数传递。

  • callbacks (list[BaseCallbackHandler] | BaseCallbackManager | None) – 用于此链运行的回调。这些回调将在构造期间传递给链的回调之外调用,但只有这些运行时回调会传播到对其他对象的调用中。

  • tags (List[str] | None) – 传递给所有回调的字符串标签列表。这些标签将与在构造期间传递给链的标签一起传递,但只有这些运行时标签会传播到对其他对象的调用中。

  • **kwargs (Any) – 如果链期望多个输入,它们可以直接作为关键字参数传递。

  • metadata (Dict[str, Any] | None)

  • **kwargs

Returns:

链式输出。

Return type:

任何

示例

# Suppose we have a single-input chain that takes a 'question' string:
chain.run("What's the temperature in Boise, Idaho?")
# -> "The temperature in Boise is..."

# Suppose we have a multi-input chain that takes a 'question' string
# and 'context' string:
question = "What's the temperature in Boise, Idaho?"
context = "Weather report for Boise, Idaho on 07/03/23..."
chain.run(question=question, context=context)
# -> "The temperature in Boise is..."
save(file_path: Path | str) None#

保存链。

Expects Chain._chain_type property to be implemented and for memory to be

空值。

Parameters:

file_path (Path | str) – 保存链的文件路径。

Return type:

示例

chain.save(file_path="path/chain.yaml")
stream(input: Input, config: RunnableConfig | None = None, **kwargs: Any | None) Iterator[Output]#

流的默认实现,调用invoke。 如果子类支持流输出,则应重写此方法。

Parameters:
  • input (Input) – Runnable 的输入。

  • config (RunnableConfig | None) – 用于Runnable的配置。默认为None。

  • kwargs (Any | None) – 传递给Runnable的额外关键字参数。

Yields:

Runnable 的输出。

Return type:

迭代器[输出]

with_alisteners(*, on_start: AsyncListener | None = None, on_end: AsyncListener | None = None, on_error: AsyncListener | None = None) Runnable[Input, Output]#

将异步生命周期监听器绑定到一个Runnable,返回一个新的Runnable。

on_start: 在Runnable开始运行之前异步调用。 on_end: 在Runnable完成运行之后异步调用。 on_error: 如果Runnable抛出错误,则异步调用。

Run对象包含有关运行的信息,包括其id、类型、输入、输出、错误、开始时间、结束时间以及添加到运行中的任何标签或元数据。

Parameters:
  • on_start (Optional[AsyncListener]) – 在Runnable开始运行之前异步调用。 默认为None。

  • on_end (Optional[AsyncListener]) – 在Runnable运行结束后异步调用。 默认为None。

  • on_error (可选[AsyncListener]) – 如果Runnable抛出错误,则异步调用。 默认为None。

Returns:

一个新的Runnable,绑定了监听器。

Return type:

Runnable[Input, Output]

示例:

from langchain_core.runnables import RunnableLambda
import time

async def test_runnable(time_to_sleep : int):
    print(f"Runnable[{time_to_sleep}s]: starts at {format_t(time.time())}")
    await asyncio.sleep(time_to_sleep)
    print(f"Runnable[{time_to_sleep}s]: ends at {format_t(time.time())}")

async def fn_start(run_obj : Runnable):
    print(f"on start callback starts at {format_t(time.time())}
    await asyncio.sleep(3)
    print(f"on start callback ends at {format_t(time.time())}")

async def fn_end(run_obj : Runnable):
    print(f"on end callback starts at {format_t(time.time())}
    await asyncio.sleep(2)
    print(f"on end callback ends at {format_t(time.time())}")

runnable = RunnableLambda(test_runnable).with_alisteners(
    on_start=fn_start,
    on_end=fn_end
)
async def concurrent_runs():
    await asyncio.gather(runnable.ainvoke(2), runnable.ainvoke(3))

asyncio.run(concurrent_runs())
Result:
on start callback starts at 2024-05-16T14:20:29.637053+00:00
on start callback starts at 2024-05-16T14:20:29.637150+00:00
on start callback ends at 2024-05-16T14:20:32.638305+00:00
on start callback ends at 2024-05-16T14:20:32.638383+00:00
Runnable[3s]: starts at 2024-05-16T14:20:32.638849+00:00
Runnable[5s]: starts at 2024-05-16T14:20:32.638999+00:00
Runnable[3s]: ends at 2024-05-16T14:20:35.640016+00:00
on end callback starts at 2024-05-16T14:20:35.640534+00:00
Runnable[5s]: ends at 2024-05-16T14:20:37.640169+00:00
on end callback starts at 2024-05-16T14:20:37.640574+00:00
on end callback ends at 2024-05-16T14:20:37.640654+00:00
on end callback ends at 2024-05-16T14:20:39.641751+00:00
with_config(config: RunnableConfig | None = None, **kwargs: Any) Runnable[Input, Output]#

将配置绑定到一个可运行对象,返回一个新的可运行对象。

Parameters:
  • config (RunnableConfig | None) – 绑定到Runnable的配置。

  • kwargs (Any) – 传递给Runnable的额外关键字参数。

Returns:

一个新的Runnable,带有绑定的配置。

Return type:

Runnable[Input, Output]

with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: tuple[type[BaseException], ...] = (<class 'Exception'>,), exception_key: Optional[str] = None) RunnableWithFallbacksT[Input, Output]#

为Runnable添加回退,返回一个新的Runnable。

新的Runnable将尝试原始的Runnable,然后在失败时依次尝试每个回退。

Parameters:
  • fallbacks (Sequence[Runnable[Input, Output]]) – 如果原始 Runnable 失败,将尝试的一系列 runnables。

  • exceptions_to_handle (tuple[type[BaseException], ...]) – 要处理的异常类型的元组。 默认为 (Exception,)。

  • exception_key (Optional[str]) – 如果指定了字符串,则处理的异常将作为输入的一部分传递给后备函数,使用指定的键。如果为 None,异常将不会传递给后备函数。如果使用此参数,基础 Runnable 及其后备函数必须接受字典作为输入。默认为 None。

Returns:

一个新的Runnable,它将在失败时尝试原始的Runnable,然后依次尝试每个回退。

Return type:

RunnableWithFallbacksT[Input, Output]

示例

from typing import Iterator

from langchain_core.runnables import RunnableGenerator


def _generate_immediate_error(input: Iterator) -> Iterator[str]:
    raise ValueError()
    yield ""


def _generate(input: Iterator) -> Iterator[str]:
    yield from "foo bar"


runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks(
    [RunnableGenerator(_generate)]
    )
print(''.join(runnable.stream({}))) #foo bar
Parameters:
  • fallbacks (Sequence[Runnable[Input, Output]]) – 如果原始 Runnable 失败,将尝试的一系列 runnables。

  • exceptions_to_handle (tuple[type[BaseException], ...]) – 要处理的异常类型的元组。

  • exception_key (Optional[str]) – 如果指定了字符串,则处理的异常将作为输入的一部分传递给后备函数,使用指定的键。如果为 None,异常将不会传递给后备函数。如果使用此参数,基础 Runnable 及其后备函数必须接受字典作为输入。

Returns:

一个新的Runnable,它将在失败时尝试原始的Runnable,然后依次尝试每个回退。

Return type:

RunnableWithFallbacksT[Input, Output]

with_listeners(*, on_start: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None, on_end: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None, on_error: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None) Runnable[Input, Output]#

将生命周期监听器绑定到一个Runnable,返回一个新的Runnable。

on_start: 在Runnable开始运行之前调用,带有Run对象。 on_end: 在Runnable完成运行之后调用,带有Run对象。 on_error: 如果Runnable抛出错误时调用,带有Run对象。

Run对象包含有关运行的信息,包括其id、类型、输入、输出、错误、开始时间、结束时间以及添加到运行中的任何标签或元数据。

Parameters:
  • on_start (可选[联合[可调用[[运行], ], 可调用[[运行, RunnableConfig], ]]]) – 在Runnable开始运行之前调用。默认为无。

  • on_end (可选[联合[可调用[[运行], ], 可调用[[运行, RunnableConfig], ]]]) – 在Runnable完成运行后调用。默认为无。

  • on_error (可选[联合[可调用[[运行], ], 可调用[[运行, RunnableConfig], ]]]) – 如果Runnable抛出错误时调用。默认为无。

Returns:

一个新的Runnable,绑定了监听器。

Return type:

Runnable[Input, Output]

示例:

from langchain_core.runnables import RunnableLambda
from langchain_core.tracers.schemas import Run

import time

def test_runnable(time_to_sleep : int):
    time.sleep(time_to_sleep)

def fn_start(run_obj: Run):
    print("start_time:", run_obj.start_time)

def fn_end(run_obj: Run):
    print("end_time:", run_obj.end_time)

chain = RunnableLambda(test_runnable).with_listeners(
    on_start=fn_start,
    on_end=fn_end
)
chain.invoke(2)
with_retry(*, retry_if_exception_type: tuple[type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) Runnable[Input, Output]#

创建一个新的Runnable,在异常时重试原始的Runnable。

Parameters:
  • retry_if_exception_type (tuple[type[BaseException], ...]) – 一个异常类型的元组,用于重试。 默认值为 (Exception,)。

  • wait_exponential_jitter (bool) – 是否在重试之间的等待时间中添加抖动。默认为 True。

  • stop_after_attempt (int) – 在放弃之前尝试的最大次数。默认为3。

Returns:

一个新的Runnable,在异常时重试原始的Runnable。

Return type:

Runnable[Input, Output]

示例:

from langchain_core.runnables import RunnableLambda

count = 0


def _lambda(x: int) -> None:
    global count
    count = count + 1
    if x == 1:
        raise ValueError("x is 1")
    else:
         pass


runnable = RunnableLambda(_lambda)
try:
    runnable.with_retry(
        stop_after_attempt=2,
        retry_if_exception_type=(ValueError,),
    ).invoke(1)
except ValueError:
    pass

assert (count == 2)
Parameters:
  • retry_if_exception_type (tuple[type[BaseException], ...]) – 一个异常类型的元组,用于在发生这些异常时重试

  • wait_exponential_jitter (bool) – 是否在重试之间为等待时间添加抖动

  • stop_after_attempt (int) – 在放弃之前尝试的最大次数

Returns:

一个新的Runnable,在异常时重试原始的Runnable。

Return type:

Runnable[Input, Output]

with_types(*, input_type: type[Input] | None = None, output_type: type[Output] | None = None) Runnable[Input, Output]#

将输入和输出类型绑定到一个Runnable,返回一个新的Runnable。

Parameters:
  • input_type (type[Input] | None) – 要绑定到Runnable的输入类型。默认为None。

  • output_type (type[Output] | None) – 要绑定到Runnable的输出类型。默认为None。

Returns:

一个带有类型绑定的新Runnable。

Return type:

Runnable[Input, Output]