Databricks向量搜索#
- class langchain_databricks.vectorstores.DatabricksVectorSearch(index_name: str, endpoint: str | None = None, embedding: Embeddings | None = None, text_column: str | None = None, columns: List[str] | None = None)[source]#
自版本0.1.2起已弃用:使用databricks_langchain.DatabricksVectorSearch 在langchain-databricks==1.0.0之前不会被移除。
Databricks 向量存储集成。
- Setup:
安装
langchain-databricks
和databricks-vectorsearch
Python 包。pip install -U langchain-databricks databricks-vectorsearch
如果您还没有Databricks Vector Search端点,您可以按照这里的说明创建一个:https://docs.databricks.com/en/generative-ai/create-query-vector-search.html
如果您在Databricks外部,请将Databricks工作区的主机名和个人访问令牌设置为环境变量:
export DATABRICKS_HOSTNAME="https://your-databricks-workspace" export DATABRICKS_TOKEN="your-personal-access-token"
关键初始化参数 — 索引参数:
index_name: 要使用的索引名称。格式:“catalog.schema.index”。 endpoint: Databricks Vector Search 端点的名称。如果未指定,
端点名称是根据索引名称自动推断的。
注意
如果您使用的是databricks-vectorsearch版本小于0.35,初始化向量存储时需要endpoint参数。
vector_store = DatabricksVectorSearch( endpoint="<your-endpoint-name>", index_name="<your-index-name>", ... )
- embedding: The embedding model.
直接访问索引或增量同步索引需要自管理嵌入。
- text_column: The name of the text column to use for the embeddings.
直接访问索引或增量同步索引需要 使用自管理的嵌入。 确保指定的文本列在索引中。
- columns: The list of column names to get when doing the search.
默认为
[primary_key, text_column]
。
实例化:
DatabricksVectorSearch 支持两种类型的索引:
Delta Sync Index 自动与源 Delta Table 同步,随着 Delta Table 中底层数据的变化,自动且增量地更新索引。
直接向量访问索引 支持直接读写向量和元数据。用户负责使用REST API或Python SDK更新此表。
对于delta-sync索引,您可以选择使用Databricks管理的嵌入或自管理的嵌入(通过LangChain嵌入类)。
如果您正在使用带有Databricks管理的嵌入的delta-sync索引:
from langchain_databricks.vectorstores import DatabricksVectorSearch vector_store = DatabricksVectorSearch( index_name="<your-index-name>" )
如果您使用的是直接访问索引或带有自管理嵌入的增量同步索引,您还需要在源表中提供嵌入模型和文本列以用于嵌入:
from langchain_openai import OpenAIEmbeddings vector_store = DatabricksVectorSearch( index_name="<your-index-name>", embedding=OpenAIEmbeddings(), text_column="document_content" )
- Add Documents:
- Delete Documents:
注意
delete 方法仅支持直接访问索引。
- Search:
- Search with filter:
- Search with score:
- Async:
- Use as Retriever:
属性
embeddings
如果可用,访问查询嵌入对象。
方法
__init__
(index_name[, endpoint, embedding, ...])aadd_documents
(documents, **kwargs)异步运行更多文档通过嵌入并添加到向量存储中。
aadd_texts
(texts[, metadatas])异步运行更多文本通过嵌入并添加到向量存储中。
add_documents
(documents, **kwargs)在向量存储中添加或更新文档。
add_texts
(texts[, metadatas, ids])将文本添加到索引中。
adelete
([ids])异步删除通过向量ID或其他条件。
afrom_documents
(documents, embedding, **kwargs)异步返回从文档和嵌入初始化的VectorStore。
afrom_texts
(texts, embedding[, metadatas, ids])异步返回从文本和嵌入初始化的VectorStore。
aget_by_ids
(ids, /)通过ID异步获取文档。
amax_marginal_relevance_search
(query[, k, ...])异步返回使用最大边际相关性选择的文档。
异步返回使用最大边际相关性选择的文档。
as_retriever
(**kwargs)返回从此VectorStore初始化的VectorStoreRetriever。
asearch
(query, search_type, **kwargs)异步返回与查询最相似的文档,使用指定的搜索类型。
asimilarity_search
(query[, k])异步返回与查询最相似的文档。
asimilarity_search_by_vector
(embedding[, k])异步返回与嵌入向量最相似的文档。
异步返回文档和相关度分数,范围在[0, 1]之间。
asimilarity_search_with_score
(*args, **kwargs)异步运行带距离的相似性搜索。
delete
([ids])从索引中删除文档。
from_documents
(documents, embedding, **kwargs)返回从文档和嵌入初始化的VectorStore。
from_texts
(texts, embedding[, metadatas])返回从文本和嵌入初始化的VectorStore。
get_by_ids
(ids, /)通过ID获取文档。
max_marginal_relevance_search
(query[, k, ...])返回使用最大边际相关性选择的文档。
返回使用最大边际相关性选择的文档。
search
(query, search_type, **kwargs)使用指定的搜索类型返回与查询最相似的文档。
similarity_search
(query[, k, filter, query_type])返回与查询最相似的文档。
similarity_search_by_vector
(embedding[, k, ...])返回与嵌入向量最相似的文档。
similarity_search_by_vector_with_score
(embedding)返回与嵌入向量最相似的文档,以及分数。
返回文档和相关度分数,范围在[0, 1]之间。
similarity_search_with_score
(query[, k, ...])返回与查询最相似的文档及其分数。
- Parameters:
index_name (str)
endpoint (可选[str])
embedding (可选[Embeddings])
text_column (可选[str])
columns (可选[列表[字符串]])
- __init__(index_name: str, endpoint: str | None = None, embedding: Embeddings | None = None, text_column: str | None = None, columns: List[str] | None = None)[source]#
- Parameters:
index_name (str)
endpoint (str | None)
embedding (Embeddings | None)
text_column (str | None)
columns (列表[字符串] | 无)
- async aadd_documents(documents: list[Document], **kwargs: Any) list[str] #
通过嵌入异步运行更多文档并将其添加到向量存储中。
- Parameters:
documents (list[Document]) – 要添加到向量存储中的文档。
kwargs (Any) – 额外的关键字参数。
- Returns:
已添加文本的ID列表。
- Raises:
ValueError – 如果ID的数量与文档的数量不匹配。
- Return type:
列表[字符串]
- async aadd_texts(texts: Iterable[str], metadatas: List[dict] | None = None, **kwargs: Any) List[str] [source]#
异步运行更多文本通过嵌入并添加到向量存储中。
- Parameters:
texts (Iterable[str]) – 要添加到向量存储中的字符串的可迭代对象。
metadatas (List[dict] | None) – 可选的与文本关联的元数据列表。默认值为 None。
ids – 可选列表
**kwargs (Any) – 向量存储特定参数。
- Returns:
将文本添加到向量存储中后的ID列表。
- Raises:
ValueError – 如果元数据的数量与文本的数量不匹配。
ValueError – 如果id的数量与文本的数量不匹配。
- Return type:
列表[str]
- add_documents(documents: list[Document], **kwargs: Any) list[str] #
在向量存储中添加或更新文档。
- Parameters:
documents (list[Document]) – 要添加到向量存储中的文档。
kwargs (Any) – 额外的关键字参数。 如果 kwargs 包含 ids 并且 documents 也包含 ids, kwargs 中的 ids 将优先。
- Returns:
已添加文本的ID列表。
- Raises:
ValueError – 如果id的数量与文档的数量不匹配。
- Return type:
列表[字符串]
- add_texts(texts: Iterable[str], metadatas: List[Dict] | None = None, ids: List[Any] | None = None, **kwargs: Any) List[str] [source]#
向索引添加文本。
注意
此方法仅支持直接访问索引。
- Parameters:
texts (Iterable[str]) – 要添加的文本列表。
metadatas (List[Dict] | None) – 每个文本的元数据列表。默认为 None。
ids (List[Any] | None) – 每个文本的ID列表。默认为None。 如果未提供,将为每个文本生成一个随机的uuid。
kwargs (Any)
- Returns:
将文本添加到索引后生成的ID列表。
- Return type:
列表[str]
- async adelete(ids: list[str] | None = None, **kwargs: Any) bool | None #
通过向量ID或其他条件异步删除。
- Parameters:
ids (list[str] | None) – 要删除的id列表。如果为None,则删除所有。默认值为None。
**kwargs (Any) – 子类可能使用的其他关键字参数。
- Returns:
如果删除成功则为真, 否则为假,如果未实现则为无。
- Return type:
可选[布尔]
- async classmethod afrom_documents(documents: list[Document], embedding: Embeddings, **kwargs: Any) VST #
异步返回从文档和嵌入初始化的VectorStore。
- Parameters:
documents (list[Document]) – 要添加到向量存储中的文档列表。
embedding (Embeddings) – 使用的嵌入函数。
kwargs (Any) – 额外的关键字参数。
- Returns:
从文档和嵌入初始化的VectorStore。
- Return type:
- async classmethod afrom_texts(texts: list[str], embedding: Embeddings, metadatas: list[dict] | None = None, *, ids: list[str] | None = None, **kwargs: Any) VST #
异步返回从文本和嵌入初始化的VectorStore。
- Parameters:
texts (list[str]) – 要添加到向量存储中的文本。
embedding (Embeddings) – 使用的嵌入函数。
metadatas (list[dict] | None) – 可选的与文本关联的元数据列表。默认值为 None。
ids (list[str] | None) – 可选的与文本关联的ID列表。
kwargs (Any) – 额外的关键字参数。
- Returns:
VectorStore 从文本和嵌入初始化。
- Return type:
- async aget_by_ids(ids: Sequence[str], /) list[Document] #
通过ID异步获取文档。
返回的文档预计将具有ID字段,该字段设置为向量存储中文档的ID。
如果某些ID未找到或存在重复的ID,返回的文档数量可能少于请求的数量。
用户不应假设返回文档的顺序与输入ID的顺序相匹配。相反,用户应依赖返回文档的ID字段。
如果没有找到某些ID的文档,此方法不应引发异常。
- Parameters:
ids (Sequence[str]) – 要检索的ID列表。
- Returns:
文档列表。
- Return type:
列表[Document]
在版本0.2.11中添加。
- async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] [来源]#
异步返回使用最大边际相关性选择的文档。
最大边际相关性优化了与查询的相似性和所选文档之间的多样性。
- Parameters:
query (str) – 用于查找相似文档的文本。
k (int) – 返回的文档数量。默认为4。
fetch_k (int) – 要传递给MMR算法的文档数量。 默认值为20。
lambda_mult (float) – 介于0和1之间的数字,决定了结果之间的多样性程度,0对应最大多样性,1对应最小多样性。默认值为0.5。
kwargs (Any)
- Returns:
通过最大边际相关性选择的文档列表。
- Return type:
列表[文档]
- async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] [source]#
异步返回使用最大边际相关性选择的文档。
最大边际相关性优化了与查询的相似性和所选文档之间的多样性。
- Parameters:
embedding (List[float]) – 用于查找相似文档的嵌入。
k (int) – 返回的文档数量。默认为4。
fetch_k (int) – 要传递给MMR算法的文档数量。 默认值为20。
lambda_mult (float) – 介于0和1之间的数字,决定了结果之间的多样性程度,0对应最大多样性,1对应最小多样性。默认值为0.5。
**kwargs (Any) – 传递给搜索方法的参数。
- Returns:
通过最大边际相关性选择的文档列表。
- Return type:
列表[文档]
- as_retriever(**kwargs: Any) VectorStoreRetriever #
返回从此VectorStore初始化的VectorStoreRetriever。
- Parameters:
**kwargs (Any) –
传递给搜索函数的关键字参数。 可以包括: search_type (Optional[str]): 定义检索器应执行的搜索类型。 可以是“similarity”(默认)、“mmr”或“similarity_score_threshold”。
检索器应执行的搜索类型。 可以是“similarity”(默认)、“mmr”或“similarity_score_threshold”。
- search_kwargs (Optional[Dict]): 传递给搜索函数的关键字参数。
- 可以包括以下内容:
k: 返回的文档数量(默认:4) score_threshold: 最小相关性阈值
用于similarity_score_threshold
- fetch_k: 传递给MMR算法的文档数量
(默认:20)
- lambda_mult: MMR返回结果的多样性;
1表示最小多样性,0表示最大多样性。(默认:0.5)
filter: 按文档元数据过滤
- Returns:
VectorStore的检索器类。
- Return type:
示例:
# Retrieve more documents with higher diversity # Useful if your dataset has many similar documents docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 6, 'lambda_mult': 0.25} ) # Fetch more documents for the MMR algorithm to consider # But only return the top 5 docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 5, 'fetch_k': 50} ) # Only retrieve documents that have a relevance score # Above a certain threshold docsearch.as_retriever( search_type="similarity_score_threshold", search_kwargs={'score_threshold': 0.8} ) # Only get the single most similar document from the dataset docsearch.as_retriever(search_kwargs={'k': 1}) # Use a filter to only retrieve documents from a specific paper docsearch.as_retriever( search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}} )
- async asearch(query: str, search_type: str, **kwargs: Any) list[Document] #
异步返回与查询最相似的文档,使用指定的搜索类型。
- Parameters:
query (str) – 输入文本。
search_type (str) – 要执行的搜索类型。可以是“similarity”、“mmr”或“similarity_score_threshold”。
**kwargs (Any) – 传递给搜索方法的参数。
- Returns:
与查询最相似的文档列表。
- Raises:
ValueError – 如果 search_type 不是 “similarity”、“mmr” 或 “similarity_score_threshold” 之一。
- Return type:
列表[Document]
- async asimilarity_search(query: str, k: int = 4, **kwargs: Any) List[Document] [source]#
异步返回与查询最相似的文档。
- Parameters:
query (str) – 输入文本。
k (int) – 返回的文档数量。默认为4。
**kwargs (Any) – 传递给搜索方法的参数。
- Returns:
与查询最相似的文档列表。
- Return type:
列表[文档]
- async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) List[Document] [source]#
异步返回与嵌入向量最相似的文档。
- Parameters:
embedding (List[float]) – 用于查找相似文档的嵌入。
k (int) – 返回的文档数量。默认为4。
**kwargs (Any) – 传递给搜索方法的参数。
- Returns:
与查询向量最相似的文档列表。
- Return type:
列表[文档]
- async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) list[tuple[Document, float]] #
异步返回文档和相关度分数,范围在[0, 1]之间。
0 表示不相似,1 表示最相似。
- Parameters:
query (str) – 输入文本。
k (int) – 返回的文档数量。默认为4。
**kwargs (Any) –
传递给相似性搜索的kwargs。应包括: score_threshold: 可选,一个介于0到1之间的浮点值
过滤检索到的文档集
- Returns:
(文档,相似度分数)的元组列表
- Return type:
列表[元组[Document, 浮点数]]
- async asimilarity_search_with_score(*args: Any, **kwargs: Any) List[Tuple[Document, float]] [source]#
异步运行带有距离的相似性搜索。
- Parameters:
*args (Any) – 传递给搜索方法的参数。
**kwargs (Any) – 传递给搜索方法的参数。
- Returns:
(文档, 相似度分数) 的元组列表。
- Return type:
列表[元组[文档, 浮点数]]
- delete(ids: List[Any] | None = None, **kwargs: Any) bool | None [source]#
从索引中删除文档。
注意
此方法仅支持直接访问索引。
- Parameters:
ids (List[Any] | None) – 要删除的文档的ID列表。
kwargs (Any)
- Returns:
如果成功则为真。
- Return type:
布尔值 | 无
- classmethod from_documents(documents: list[Document], embedding: Embeddings, **kwargs: Any) VST #
返回从文档和嵌入初始化的VectorStore。
- Parameters:
documents (list[Document]) – 要添加到向量存储中的文档列表。
embedding (Embeddings) – 使用的嵌入函数。
kwargs (Any) – 额外的关键字参数。
- Returns:
从文档和嵌入初始化的VectorStore。
- Return type:
- classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: List[Dict] | None = None, **kwargs: Any) VST [source]#
返回从文本和嵌入初始化的VectorStore。
- Parameters:
texts (List[str]) – 要添加到向量存储中的文本。
embedding (Embeddings) – 使用的嵌入函数。
metadatas (List[Dict] | None) – 可选的与文本关联的元数据列表。默认值为 None。
ids – 与文本关联的可选ID列表。
kwargs (Any) – 额外的关键字参数。
- Returns:
VectorStore 从文本和嵌入初始化。
- Return type:
- get_by_ids(ids: Sequence[str], /) list[Document] #
通过ID获取文档。
返回的文档预计将具有ID字段,该字段设置为向量存储中文档的ID。
如果某些ID未找到或存在重复的ID,返回的文档数量可能少于请求的数量。
用户不应假设返回文档的顺序与输入ID的顺序相匹配。相反,用户应依赖返回文档的ID字段。
如果没有找到某些ID的文档,此方法不应引发异常。
- Parameters:
ids (Sequence[str]) – 要检索的ID列表。
- Returns:
文档列表。
- Return type:
列表[Document]
在版本0.2.11中添加。
- max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Dict[str, Any] | None = None, *, query_type: str | None = None, **kwargs: Any) List[Document] [source]#
返回使用最大边际相关性选择的文档。
最大边际相关性优化了与查询的相似性和所选文档之间的多样性。
注意
此方法不支持使用Databricks管理的嵌入的索引。
- Parameters:
query (str) – 用于查找相似文档的文本。
k (int) – 返回的文档数量。默认为4。
fetch_k (int) – 要获取并传递给MMR算法的文档数量。
lambda_mult (float) – 介于0和1之间的数字,决定了结果之间的多样性程度,0对应最大多样性,1对应最小多样性。默认值为0.5。
filter (Dict[str, Any] | None) – 应用于查询的过滤器。默认为 None。
query_type (str | None) – 此查询的类型。支持的值为“ANN”和“HYBRID”。
kwargs (Any)
- Returns:
通过最大边际相关性选择的文档列表。
- Return type:
列表[文档]
- max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Any | None = None, *, query_type: str | None = None, **kwargs: Any) List[Document] [source]#
返回使用最大边际相关性选择的文档。
最大边际相关性优化了与查询的相似性和所选文档之间的多样性。
注意
此方法不支持使用Databricks管理的嵌入的索引。
- Parameters:
embedding (List[float]) – 用于查找相似文档的嵌入。
k (int) – 返回的文档数量。默认为4。
fetch_k (int) – 要获取并传递给MMR算法的文档数量。
lambda_mult (float) – 介于0和1之间的数字,决定了结果之间的多样性程度,0对应最大多样性,1对应最小多样性。默认值为0.5。
filter (Any | None) – 应用于查询的过滤器。默认为 None。
query_type (str | None) – 此查询的类型。支持的值为“ANN”和“HYBRID”。
kwargs (Any)
- Returns:
通过最大边际相关性选择的文档列表。
- Return type:
列表[文档]
- search(query: str, search_type: str, **kwargs: Any) list[Document] #
使用指定的搜索类型返回与查询最相似的文档。
- Parameters:
query (str) – 输入文本
search_type (str) – 要执行的搜索类型。可以是“similarity”、“mmr”或“similarity_score_threshold”。
**kwargs (Any) – 传递给搜索方法的参数。
- Returns:
与查询最相似的文档列表。
- Raises:
ValueError – 如果 search_type 不是 “similarity”、“mmr” 或 “similarity_score_threshold” 之一。
- Return type:
列表[Document]
- similarity_search(query: str, k: int = 4, filter: Dict[str, Any] | None = None, *, query_type: str | None = None, **kwargs: Any) List[Document] [来源]#
返回与查询最相似的文档。
- Parameters:
query (str) – 用于查找相似文档的文本。
k (int) – 返回的文档数量。默认为4。
filter (Dict[str, Any] | None) – 应用于查询的过滤器。默认为 None。
query_type (str | None) – 此查询的类型。支持的值为“ANN”和“HYBRID”。
kwargs (Any)
- Returns:
与嵌入最相似的文档列表。
- Return type:
列表[文档]
- similarity_search_by_vector(embedding: List[float], k: int = 4, filter: Any | None = None, *, query_type: str | None = None, query: str | None = None, **kwargs: Any) List[Document] [source]#
返回与嵌入向量最相似的文档。
- Parameters:
embedding (List[float]) – 用于查找相似文档的嵌入。
k (int) – 返回的文档数量。默认为4。
filter (Any | None) – 应用于查询的过滤器。默认为 None。
query_type (str | None) – 此查询的类型。支持的值为“ANN”和“HYBRID”。
query (str | None)
kwargs (Any)
- Returns:
与嵌入最相似的文档列表。
- Return type:
列表[文档]
- similarity_search_by_vector_with_score(embedding: List[float], k: int = 4, filter: Any | None = None, *, query_type: str | None = None, query: str | None = None, **kwargs: Any) List[Tuple[Document, float]] [来源]#
返回与嵌入向量最相似的文档,以及分数。
注意
此方法不支持使用Databricks管理的嵌入的索引。
- Parameters:
embedding (List[float]) – 用于查找相似文档的嵌入。
k (int) – 返回的文档数量。默认为4。
filter (Any | None) – 应用于查询的过滤器。默认为 None。
query_type (str | None) – 此查询的类型。支持的值为“ANN”和“HYBRID”。
query (str | None)
kwargs (Any)
- Returns:
与嵌入最相似的文档列表及每个文档的分数。
- Return type:
列表[元组[文档, 浮点数]]
- similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) list[tuple[Document, float]] #
返回文档和相关度分数,范围在[0, 1]之间。
0 表示不相似,1 表示最相似。
- Parameters:
query (str) – 输入文本。
k (int) – 返回的文档数量。默认为4。
**kwargs (Any) –
传递给相似性搜索的kwargs。应包括: score_threshold: 可选,一个介于0到1之间的浮点值
用于过滤检索到的文档集。
- Returns:
(文档, 相似度分数) 的元组列表。
- Return type:
列表[元组[Document, 浮点数]]
- similarity_search_with_score(query: str, k: int = 4, filter: Dict[str, Any] | None = None, *, query_type: str | None = None, **kwargs: Any) List[Tuple[Document, float]] [source]#
返回与查询最相似的文档,以及分数。
- Parameters:
query (str) – 用于查找相似文档的文本。
k (int) – 返回的文档数量。默认为4。
filter (Dict[str, Any] | None) – 应用于查询的过滤器。默认为 None。
query_type (str | None) – 此查询的类型。支持的值为“ANN”和“HYBRID”。
kwargs (Any)
- Returns:
与嵌入最相似的文档列表及每个文档的分数。
- Return type:
列表[元组[文档, 浮点数]]
使用 DatabricksVectorSearch 的示例