异步Elasticsearch检索器#
- class langchain_elasticsearch.retrievers.AsyncElasticsearchRetriever[来源]#
基础类:
AsyncElasticsearchRetriever
注意
AsyncElasticsearchRetriever 实现了标准的
Runnable Interface
。🏃Runnable Interface
接口在可运行对象上提供了额外的方法,例如with_types
,with_retry
,assign
,bind
,get_graph
, 等等。- param body_func: Callable[[str], Dict] [Required]#
- param content_field: str | Mapping[str, str] | None = None#
- param es_client: AsyncElasticsearch [Required]#
- param index_name: str | Sequence[str] [Required]#
- param metadata: dict[str, Any] | None = None#
与检索器关联的可选元数据。默认为None。 此元数据将与每次调用此检索器相关联, 并作为参数传递给callbacks中定义的处理程序。 您可以使用这些元数据来识别特定检索器实例及其用例。
- param tags: list[str] | None = None#
与检索器关联的可选标签列表。默认为None。 这些标签将与每次调用此检索器相关联, 并作为参数传递给callbacks中定义的处理程序。 您可以使用这些标签来识别特定用例的检索器实例。
- async abatch(inputs: list[Input], config: RunnableConfig | list[RunnableConfig] | None = None, *, return_exceptions: bool = False, **kwargs: Any | None) list[Output] #
默认实现使用asyncio.gather并行运行ainvoke。
batch的默认实现对于IO绑定的runnables效果很好。
如果子类能够更高效地进行批处理,则应重写此方法; 例如,如果底层的Runnable使用支持批处理模式的API。
- Parameters:
inputs (list[Input]) – Runnable 的输入列表。
config (RunnableConfig | list[RunnableConfig] | None) – 调用Runnable时使用的配置。 该配置支持标准键,如用于跟踪目的的‘tags’、‘metadata’,用于控制并行工作量的‘max_concurrency’,以及其他键。更多详情请参考RunnableConfig。默认为None。
return_exceptions (bool) – 是否返回异常而不是抛出它们。默认为 False。
kwargs (Any | None) – 传递给Runnable的额外关键字参数。
- Returns:
Runnable 的输出列表。
- Return type:
列表[输出]
- async abatch_as_completed(inputs: Sequence[Input], config: RunnableConfig | Sequence[RunnableConfig] | None = None, *, return_exceptions: bool = False, **kwargs: Any | None) AsyncIterator[tuple[int, Output | Exception]] #
在输入列表上并行运行ainvoke,在它们完成时产生结果。
- Parameters:
inputs (Sequence[Input]) – Runnable 的输入列表。
config (RunnableConfig | Sequence[RunnableConfig] | None) – 调用Runnable时使用的配置。 该配置支持标准键,如用于跟踪目的的'tags'、'metadata',用于控制并行工作量的'max_concurrency',以及其他键。有关更多详细信息,请参阅RunnableConfig。默认为None。默认为None。
return_exceptions (bool) – 是否返回异常而不是抛出它们。默认为 False。
kwargs (Any | None) – 传递给Runnable的额外关键字参数。
- Yields:
输入索引和Runnable输出的元组。
- Return type:
AsyncIterator[元组[int, Output | 异常]]
- async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: list[str] | None = None, metadata: dict[str, Any] | None = None, run_name: str | None = None, **kwargs: Any) list[Document] #
自版本0.1.46起已弃用:请改用
ainvoke()
。在langchain-core==1.0之前不会移除。异步获取与查询相关的文档。
用户应优先使用.ainvoke或.abatch,而不是直接使用aget_relevant_documents。
- Parameters:
query (str) – 用于查找相关文档的字符串。
callbacks (Callbacks) – 回调管理器或回调列表。
tags (可选[列表[字符串]]) – 与检索器关联的可选标签列表。 这些标签将与每次调用此检索器相关联, 并作为参数传递给callbacks中定义的处理程序。 默认为None。
metadata (可选[dict[str, Any]]) – 与检索器关联的可选元数据。 此元数据将与每次调用此检索器相关联, 并作为参数传递给callbacks中定义的处理程序。 默认为None。
run_name (可选[str]) – 运行的可选名称。默认为 None。
kwargs (Any) – 传递给检索器的额外参数。
- Returns:
相关文档列表。
- Return type:
列表[Document]
- async ainvoke(input: str, config: RunnableConfig | None = None, **kwargs: Any) list[Document] #
异步调用检索器以获取相关文档。
异步检索器调用的主要入口点。
- Parameters:
input (str) – 查询字符串。
config (RunnableConfig | None) – 检索器的配置。默认为 None。
kwargs (Any) – 传递给检索器的额外参数。
- Returns:
相关文档列表。
- Return type:
列表[Document]
示例:
await retriever.ainvoke("query")
- async astream(input: Input, config: RunnableConfig | None = None, **kwargs: Any | None) AsyncIterator[Output] #
astream的默认实现,调用ainvoke。 如果子类支持流式输出,则应重写此方法。
- Parameters:
input (Input) – Runnable 的输入。
config (RunnableConfig | None) – 用于Runnable的配置。默认为None。
kwargs (Any | None) – 传递给Runnable的额外关键字参数。
- Yields:
Runnable 的输出。
- Return type:
AsyncIterator[Output]
- async astream_events(input: Any, config: RunnableConfig | None = None, *, version: Literal['v1', 'v2'], include_names: Sequence[str] | None = None, include_types: Sequence[str] | None = None, include_tags: Sequence[str] | None = None, exclude_names: Sequence[str] | None = None, exclude_types: Sequence[str] | None = None, exclude_tags: Sequence[str] | None = None, **kwargs: Any) AsyncIterator[StandardStreamEvent | CustomStreamEvent] #
生成事件流。
用于创建一个迭代器,遍历提供实时信息的StreamEvents,包括来自中间结果的StreamEvents。
StreamEvent 是一个具有以下模式的字典:
event
: str - 事件名称的格式为格式: on_[runnable_type]_(start|stream|end).
name
: str - 生成事件的 Runnable 的名称。run_id
: str - 与给定执行相关联的随机生成的ID发出事件的Runnable。 作为父Runnable执行的一部分被调用的子Runnable会被分配其自己唯一的ID。
parent_ids
: List[str] - 生成事件的父可运行对象的ID。根可运行对象将有一个空列表。 父ID的顺序是从根到直接父对象。 仅适用于API的v2版本。API的v1版本将返回一个空列表。
tags
: Optional[List[str]] - 生成事件的Runnable的标签事件。
metadata
: Optional[Dict[str, Any]] - Runnable的元数据生成事件的元数据。
data
: Dict[str, Any]
下表展示了一些可能由不同链发出的事件。为了简洁起见,表中省略了元数据字段。链定义已包含在表后。
注意 此参考表适用于V2版本的架构。
事件
名称
块
输入
输出
on_chat_model_start
[模型名称]
{“messages”: [[SystemMessage, HumanMessage]]}
on_chat_model_stream
[model name]
AIMessageChunk(content=”hello”)
on_chat_model_end
[model name]
{“messages”: [[SystemMessage, HumanMessage]]}
AIMessageChunk(content=”hello world”)
on_llm_start
[model name]
{‘input’: ‘hello’}
on_llm_stream
[模型名称]
‘Hello’
on_llm_end
[model name]
‘你好,人类!’
链上开始
格式化文档
on_chain_stream
format_docs
“你好世界!,再见世界!”
on_chain_end
format_docs
[Document(…)]
“你好世界!,再见世界!”
on_tool_start
some_tool
{“x”: 1, “y”: “2”}
on_tool_end
some_tool
{“x”: 1, “y”: “2”}
on_retriever_start
[retriever name]
{“query”: “hello”}
on_retriever_end
[retriever name]
{“query”: “hello”}
[Document(…), ..]
on_prompt_start
[template_name]
{“question”: “hello”}
on_prompt_end
[template_name]
{“question”: “hello”}
ChatPromptValue(messages: [SystemMessage, …])
除了标准事件外,用户还可以派发自定义事件(见下面的示例)。
自定义事件将仅在API的v2版本中显示!
自定义事件具有以下格式:
属性
类型
描述
name
str
用户定义的事件名称。
data
Any
与事件相关的数据。这可以是任何内容,但我们建议使其可JSON序列化。
以下是上述标准事件相关的声明:
format_docs:
def format_docs(docs: List[Document]) -> str: '''Format the docs.''' return ", ".join([doc.page_content for doc in docs]) format_docs = RunnableLambda(format_docs)
some_tool:
@tool def some_tool(x: int, y: str) -> dict: '''Some_tool.''' return {"x": x, "y": y}
提示:
template = ChatPromptTemplate.from_messages( [("system", "You are Cat Agent 007"), ("human", "{question}")] ).with_config({"run_name": "my_template", "tags": ["my_template"]})
示例:
from langchain_core.runnables import RunnableLambda async def reverse(s: str) -> str: return s[::-1] chain = RunnableLambda(func=reverse) events = [ event async for event in chain.astream_events("hello", version="v2") ] # will produce the following events (run_id, and parent_ids # has been omitted for brevity): [ { "data": {"input": "hello"}, "event": "on_chain_start", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"chunk": "olleh"}, "event": "on_chain_stream", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"output": "olleh"}, "event": "on_chain_end", "metadata": {}, "name": "reverse", "tags": [], }, ]
示例:分发自定义事件
from langchain_core.callbacks.manager import ( adispatch_custom_event, ) from langchain_core.runnables import RunnableLambda, RunnableConfig import asyncio async def slow_thing(some_input: str, config: RunnableConfig) -> str: """Do something that takes a long time.""" await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 1 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 2 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation return "Done" slow_thing = RunnableLambda(slow_thing) async for event in slow_thing.astream_events("some_input", version="v2"): print(event)
- Parameters:
input (Any) – Runnable 的输入。
config (RunnableConfig | None) – 用于Runnable的配置。
version (Literal['v1', 'v2']) – 使用的模式版本,可以是 v2 或 v1。 用户应使用 v2。 v1 是为了向后兼容,将在 0.4.0 版本中弃用。 在 API 稳定之前不会分配默认值。 自定义事件仅在 v2 中显示。
include_names (Sequence[str] | None) – 仅包含来自具有匹配名称的可运行对象的事件。
include_types (Sequence[str] | None) – 仅包含来自具有匹配类型的可运行对象的事件。
include_tags (Sequence[str] | None) – 仅包含具有匹配标签的可运行对象的事件。
exclude_names (Sequence[str] | None) – 排除具有匹配名称的可运行对象的事件。
exclude_types (Sequence[str] | None) – 排除具有匹配类型的可运行对象的事件。
exclude_tags (Sequence[str] | None) – 排除具有匹配标签的可运行对象的事件。
kwargs (Any) – 传递给 Runnable 的额外关键字参数。 这些参数将传递给 astream_log,因为 astream_events 的实现是基于 astream_log 的。
- Yields:
一个异步的StreamEvents流。
- Raises:
NotImplementedError – 如果版本不是v1或v2。
- Return type:
AsyncIterator[StandardStreamEvent | CustomStreamEvent]
- batch(inputs: list[Input], config: RunnableConfig | list[RunnableConfig] | None = None, *, return_exceptions: bool = False, **kwargs: Any | None) list[Output] #
默认实现使用线程池执行器并行运行invoke。
batch的默认实现对于IO绑定的runnables效果很好。
如果子类能够更高效地进行批处理,则应重写此方法; 例如,如果底层的Runnable使用支持批处理模式的API。
- Parameters:
inputs (列表[Input])
config (RunnableConfig | list[RunnableConfig] | None)
return_exceptions (bool)
kwargs (任意 | 无)
- Return type:
列表[输出]
- batch_as_completed(inputs: Sequence[Input], config: RunnableConfig | Sequence[RunnableConfig] | None = None, *, return_exceptions: bool = False, **kwargs: Any | None) Iterator[tuple[int, Output | Exception]] #
在输入列表上并行运行invoke,在它们完成时产生结果。
- Parameters:
inputs (Sequence[Input])
config (RunnableConfig | Sequence[RunnableConfig] | None)
return_exceptions (bool)
kwargs (任意 | 无)
- Return type:
Iterator[元组[int, Output | 异常]]
- bind(**kwargs: Any) Runnable[Input, Output] #
将参数绑定到Runnable,返回一个新的Runnable。
当链中的Runnable需要一个不在前一个Runnable输出中或用户输入中的参数时,这很有用。
- Parameters:
kwargs (Any) – 绑定到Runnable的参数。
- Returns:
一个新的Runnable,参数已绑定。
- Return type:
Runnable[Input, Output]
示例:
from langchain_community.chat_models import ChatOllama from langchain_core.output_parsers import StrOutputParser llm = ChatOllama(model='llama2') # Without bind. chain = ( llm | StrOutputParser() ) chain.invoke("Repeat quoted words exactly: 'One two three four five.'") # Output is 'One two three four five.' # With bind. chain = ( llm.bind(stop=["three"]) | StrOutputParser() ) chain.invoke("Repeat quoted words exactly: 'One two three four five.'") # Output is 'One two'
- configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Runnable[Input, Output] | Callable[[], Runnable[Input, Output]]) RunnableSerializable #
配置可以在运行时设置的Runnables的替代方案。
- Parameters:
which (ConfigurableField) – 将用于选择替代项的ConfigurableField实例。
default_key (str) – 如果没有选择其他选项,则使用的默认键。 默认为“default”。
prefix_keys (bool) – 是否在键前加上 ConfigurableField 的 id。 默认为 False。
**kwargs (Runnable[Input, Output] | Callable[[], Runnable[Input, Output]]) – 一个字典,键为Runnable实例或返回Runnable实例的可调用对象。
- Returns:
一个新的Runnable,配置了替代方案。
- Return type:
from langchain_anthropic import ChatAnthropic from langchain_core.runnables.utils import ConfigurableField from langchain_openai import ChatOpenAI model = ChatAnthropic( model_name="claude-3-sonnet-20240229" ).configurable_alternatives( ConfigurableField(id="llm"), default_key="anthropic", openai=ChatOpenAI() ) # uses the default model ChatAnthropic print(model.invoke("which organization created you?").content) # uses ChatOpenAI print( model.with_config( configurable={"llm": "openai"} ).invoke("which organization created you?").content )
- configurable_fields(**kwargs: ConfigurableField | ConfigurableFieldSingleOption | ConfigurableFieldMultiOption) RunnableSerializable #
在运行时配置特定的Runnable字段。
- Parameters:
**kwargs (ConfigurableField | ConfigurableFieldSingleOption | ConfigurableFieldMultiOption) – 一个包含ConfigurableField实例的字典,用于配置。
- Returns:
一个新的Runnable,其字段已配置。
- Return type:
from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI model = ChatOpenAI(max_tokens=20).configurable_fields( max_tokens=ConfigurableField( id="output_token_number", name="Max tokens in the output", description="The maximum number of tokens in the output", ) ) # max_tokens = 20 print( "max_tokens_20: ", model.invoke("tell me something about chess").content ) # max_tokens = 200 print("max_tokens_200: ", model.with_config( configurable={"output_token_number": 200} ).invoke("tell me something about chess").content )
- classmethod from_es_params(index_name: str | Sequence[str], body_func: Callable[[str], Dict], content_field: str | Mapping[str, str] | None = None, document_mapper: Callable[[Mapping], Document] | None = None, url: str | None = None, cloud_id: str | None = None, api_key: str | None = None, username: str | None = None, password: str | None = None, params: Dict[str, Any] | None = None) AsyncElasticsearchRetriever [source]#
- Parameters:
index_name (str | Sequence[str])
body_func (Callable[[str], Dict])
content_field (str | Mapping[str, str] | None)
document_mapper (Callable[[Mapping], Document] | None)
url (str | None)
cloud_id (str | None)
api_key (str | None)
username (str | None)
password (str | None)
params (Dict[str, Any] | None)
- Return type:
AsyncElasticsearchRetriever
- get_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: list[str] | None = None, metadata: dict[str, Any] | None = None, run_name: str | None = None, **kwargs: Any) list[Document] #
自版本0.1.46起已弃用:请改用
invoke()
。在langchain-core==1.0之前不会移除。检索与查询相关的文档。
用户应优先使用.invoke或.batch,而不是直接使用get_relevant_documents。
- Parameters:
query (str) – 用于查找相关文档的字符串。
callbacks (Callbacks) – 回调管理器或回调列表。默认为 None。
tags (可选[列表[字符串]]) – 与检索器关联的可选标签列表。 这些标签将与每次调用此检索器相关联, 并作为参数传递给callbacks中定义的处理程序。 默认为None。
metadata (可选[dict[str, Any]]) – 与检索器关联的可选元数据。 此元数据将与每次调用此检索器相关联, 并作为参数传递给callbacks中定义的处理程序。 默认为None。
run_name (可选[str]) – 运行的可选名称。默认为 None。
kwargs (Any) – 传递给检索器的额外参数。
- Returns:
相关文档列表。
- Return type:
列表[Document]
- invoke(input: str, config: RunnableConfig | None = None, **kwargs: Any) list[Document] #
调用检索器以获取相关文档。
同步检索器调用的主要入口点。
- Parameters:
input (str) – 查询字符串。
config (RunnableConfig | None) – 检索器的配置。默认为 None。
kwargs (Any) – 传递给检索器的额外参数。
- Returns:
相关文档列表。
- Return type:
列表[Document]
示例:
retriever.invoke("query")
- stream(input: Input, config: RunnableConfig | None = None, **kwargs: Any | None) Iterator[Output] #
流的默认实现,调用invoke。 如果子类支持流输出,则应重写此方法。
- Parameters:
input (Input) – Runnable 的输入。
config (RunnableConfig | None) – 用于Runnable的配置。默认为None。
kwargs (Any | None) – 传递给Runnable的额外关键字参数。
- Yields:
Runnable 的输出。
- Return type:
迭代器[输出]
- with_alisteners(*, on_start: AsyncListener | None = None, on_end: AsyncListener | None = None, on_error: AsyncListener | None = None) Runnable[Input, Output] #
将异步生命周期监听器绑定到一个Runnable,返回一个新的Runnable。
on_start: 在Runnable开始运行之前异步调用。 on_end: 在Runnable完成运行之后异步调用。 on_error: 如果Runnable抛出错误,则异步调用。
Run对象包含有关运行的信息,包括其id、类型、输入、输出、错误、开始时间、结束时间以及添加到运行中的任何标签或元数据。
- Parameters:
on_start (Optional[AsyncListener]) – 在Runnable开始运行之前异步调用。 默认为None。
on_end (Optional[AsyncListener]) – 在Runnable运行结束后异步调用。 默认为None。
on_error (可选[AsyncListener]) – 如果Runnable抛出错误,则异步调用。 默认为None。
- Returns:
一个新的Runnable,绑定了监听器。
- Return type:
Runnable[Input, Output]
示例:
from langchain_core.runnables import RunnableLambda import time async def test_runnable(time_to_sleep : int): print(f"Runnable[{time_to_sleep}s]: starts at {format_t(time.time())}") await asyncio.sleep(time_to_sleep) print(f"Runnable[{time_to_sleep}s]: ends at {format_t(time.time())}") async def fn_start(run_obj : Runnable): print(f"on start callback starts at {format_t(time.time())} await asyncio.sleep(3) print(f"on start callback ends at {format_t(time.time())}") async def fn_end(run_obj : Runnable): print(f"on end callback starts at {format_t(time.time())} await asyncio.sleep(2) print(f"on end callback ends at {format_t(time.time())}") runnable = RunnableLambda(test_runnable).with_alisteners( on_start=fn_start, on_end=fn_end ) async def concurrent_runs(): await asyncio.gather(runnable.ainvoke(2), runnable.ainvoke(3)) asyncio.run(concurrent_runs()) Result: on start callback starts at 2024-05-16T14:20:29.637053+00:00 on start callback starts at 2024-05-16T14:20:29.637150+00:00 on start callback ends at 2024-05-16T14:20:32.638305+00:00 on start callback ends at 2024-05-16T14:20:32.638383+00:00 Runnable[3s]: starts at 2024-05-16T14:20:32.638849+00:00 Runnable[5s]: starts at 2024-05-16T14:20:32.638999+00:00 Runnable[3s]: ends at 2024-05-16T14:20:35.640016+00:00 on end callback starts at 2024-05-16T14:20:35.640534+00:00 Runnable[5s]: ends at 2024-05-16T14:20:37.640169+00:00 on end callback starts at 2024-05-16T14:20:37.640574+00:00 on end callback ends at 2024-05-16T14:20:37.640654+00:00 on end callback ends at 2024-05-16T14:20:39.641751+00:00
- with_config(config: RunnableConfig | None = None, **kwargs: Any) Runnable[Input, Output] #
将配置绑定到一个可运行对象,返回一个新的可运行对象。
- Parameters:
config (RunnableConfig | None) – 绑定到Runnable的配置。
kwargs (Any) – 传递给Runnable的额外关键字参数。
- Returns:
一个新的Runnable,带有绑定的配置。
- Return type:
Runnable[Input, Output]
- with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: tuple[type[BaseException], ...] = (<class 'Exception'>,), exception_key: Optional[str] = None) RunnableWithFallbacksT[Input, Output] #
为Runnable添加回退,返回一个新的Runnable。
新的Runnable将尝试原始的Runnable,然后在失败时依次尝试每个回退。
- Parameters:
fallbacks (Sequence[Runnable[Input, Output]]) – 如果原始 Runnable 失败,将尝试的一系列 runnables。
exceptions_to_handle (tuple[type[BaseException], ...]) – 要处理的异常类型的元组。 默认为 (Exception,)。
exception_key (Optional[str]) – 如果指定了字符串,则处理的异常将作为输入的一部分传递给后备函数,使用指定的键。如果为 None,异常将不会传递给后备函数。如果使用此参数,基础 Runnable 及其后备函数必须接受字典作为输入。默认为 None。
- Returns:
一个新的Runnable,它将在失败时尝试原始的Runnable,然后依次尝试每个回退。
- Return type:
RunnableWithFallbacksT[Input, Output]
示例
from typing import Iterator from langchain_core.runnables import RunnableGenerator def _generate_immediate_error(input: Iterator) -> Iterator[str]: raise ValueError() yield "" def _generate(input: Iterator) -> Iterator[str]: yield from "foo bar" runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks( [RunnableGenerator(_generate)] ) print(''.join(runnable.stream({}))) #foo bar
- Parameters:
fallbacks (Sequence[Runnable[Input, Output]]) – 如果原始 Runnable 失败,将尝试的一系列 runnables。
exceptions_to_handle (tuple[type[BaseException], ...]) – 要处理的异常类型的元组。
exception_key (Optional[str]) – 如果指定了字符串,则处理的异常将作为输入的一部分传递给后备函数,使用指定的键。如果为 None,异常将不会传递给后备函数。如果使用此参数,基础 Runnable 及其后备函数必须接受字典作为输入。
- Returns:
一个新的Runnable,它将在失败时尝试原始的Runnable,然后依次尝试每个回退。
- Return type:
RunnableWithFallbacksT[Input, Output]
- with_listeners(*, on_start: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None, on_end: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None, on_error: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None) Runnable[Input, Output] #
将生命周期监听器绑定到一个Runnable,返回一个新的Runnable。
on_start: 在Runnable开始运行之前调用,带有Run对象。 on_end: 在Runnable完成运行之后调用,带有Run对象。 on_error: 如果Runnable抛出错误时调用,带有Run对象。
Run对象包含有关运行的信息,包括其id、类型、输入、输出、错误、开始时间、结束时间以及添加到运行中的任何标签或元数据。
- Parameters:
on_start (可选[联合[可调用[[运行], 无], 可调用[[运行, RunnableConfig], 无]]]) – 在Runnable开始运行之前调用。默认为无。
on_end (可选[联合[可调用[[运行], 无], 可调用[[运行, RunnableConfig], 无]]]) – 在Runnable完成运行后调用。默认为无。
on_error (可选[联合[可调用[[运行], 无], 可调用[[运行, RunnableConfig], 无]]]) – 如果Runnable抛出错误时调用。默认为无。
- Returns:
一个新的Runnable,绑定了监听器。
- Return type:
Runnable[Input, Output]
示例:
from langchain_core.runnables import RunnableLambda from langchain_core.tracers.schemas import Run import time def test_runnable(time_to_sleep : int): time.sleep(time_to_sleep) def fn_start(run_obj: Run): print("start_time:", run_obj.start_time) def fn_end(run_obj: Run): print("end_time:", run_obj.end_time) chain = RunnableLambda(test_runnable).with_listeners( on_start=fn_start, on_end=fn_end ) chain.invoke(2)
- with_retry(*, retry_if_exception_type: tuple[type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) Runnable[Input, Output] #
创建一个新的Runnable,在异常时重试原始的Runnable。
- Parameters:
retry_if_exception_type (tuple[type[BaseException], ...]) – 一个异常类型的元组,用于重试。 默认值为 (Exception,)。
wait_exponential_jitter (bool) – 是否在重试之间的等待时间中添加抖动。默认为 True。
stop_after_attempt (int) – 在放弃之前尝试的最大次数。默认为3。
- Returns:
一个新的Runnable,在异常时重试原始的Runnable。
- Return type:
Runnable[Input, Output]
示例:
from langchain_core.runnables import RunnableLambda count = 0 def _lambda(x: int) -> None: global count count = count + 1 if x == 1: raise ValueError("x is 1") else: pass runnable = RunnableLambda(_lambda) try: runnable.with_retry( stop_after_attempt=2, retry_if_exception_type=(ValueError,), ).invoke(1) except ValueError: pass assert (count == 2)
- Parameters:
retry_if_exception_type (tuple[type[BaseException], ...]) – 一个异常类型的元组,用于在发生这些异常时重试
wait_exponential_jitter (bool) – 是否在重试之间为等待时间添加抖动
stop_after_attempt (int) – 在放弃之前尝试的最大次数
- Returns:
一个新的Runnable,在异常时重试原始的Runnable。
- Return type:
Runnable[Input, Output]
- with_types(*, input_type: type[Input] | None = None, output_type: type[Output] | None = None) Runnable[Input, Output] #
将输入和输出类型绑定到一个Runnable,返回一个新的Runnable。
- Parameters:
input_type (type[Input] | None) – 要绑定到Runnable的输入类型。默认为None。
output_type (type[Output] | None) – 要绑定到Runnable的输出类型。默认为None。
- Returns:
一个带有类型绑定的新Runnable。
- Return type:
Runnable[Input, Output]