create_xml_agent#
- langchain.agents.xml.base.create_xml_agent(llm: ~langchain_core.language_models.base.BaseLanguageModel, tools: ~typing.Sequence[~langchain_core.tools.base.BaseTool], prompt: ~langchain_core.prompts.base.BasePromptTemplate, tools_renderer: ~typing.Callable[[list[~langchain_core.tools.base.BaseTool]], str] = <function render_text_description>, *, stop_sequence: bool | ~typing.List[str] = True) Runnable [source]#
创建一个使用XML来格式化其逻辑的代理。
- Parameters:
llm (BaseLanguageModel) – 用作代理的LLM。
tools (Sequence[BaseTool]) – 此代理可以访问的工具。
prompt (BasePromptTemplate) – 要使用的提示,必须包含输入键 tools: 包含每个工具的描述。 agent_scratchpad: 包含先前的代理操作和工具输出。
tools_renderer (Callable[[list[BaseTool]], str]) – 这控制了工具如何转换为字符串,然后传递给LLM。默认是render_text_description。
stop_sequence (bool | List[str]) –
布尔值或字符串列表。 如果为True,则添加一个“”的停止标记以避免幻觉。 如果为False,则不添加停止标记。 如果是字符串列表,则使用提供的列表作为停止标记。
默认值为True。如果您使用的LLM不支持停止序列,您可能需要将其设置为False。
- Returns:
一个表示代理的可运行序列。它接收与传入提示相同的所有输入变量作为输入。它返回一个AgentAction或AgentFinish作为输出。
- Return type:
示例
from langchain import hub from langchain_community.chat_models import ChatAnthropic from langchain.agents import AgentExecutor, create_xml_agent prompt = hub.pull("hwchase17/xml-agent-convo") model = ChatAnthropic(model="claude-3-haiku-20240307") tools = ... agent = create_xml_agent(model, tools, prompt) agent_executor = AgentExecutor(agent=agent, tools=tools) agent_executor.invoke({"input": "hi"}) # Use with chat history from langchain_core.messages import AIMessage, HumanMessage agent_executor.invoke( { "input": "what's my name?", # Notice that chat_history is a string # since this prompt is aimed at LLMs, not chat models "chat_history": "Human: My name is Bob\nAI: Hello Bob!", } )
提示:
- The prompt must have input keys:
tools: 包含每个工具的描述。
agent_scratchpad: 包含之前的代理操作和工具输出,以XML字符串形式存在。
这是一个例子:
from langchain_core.prompts import PromptTemplate template = '''You are a helpful assistant. Help the user answer any questions. You have access to the following tools: {tools} In order to use a tool, you can use <tool></tool> and <tool_input></tool_input> tags. You will then get back a response in the form <observation></observation> For example, if you have a tool called 'search' that could run a google search, in order to search for the weather in SF you would respond: <tool>search</tool><tool_input>weather in SF</tool_input> <observation>64 degrees</observation> When you are done, respond with a final answer between <final_answer></final_answer>. For example: <final_answer>The weather in SF is 64 degrees</final_answer> Begin! Previous Conversation: {chat_history} Question: {input} {agent_scratchpad}''' prompt = PromptTemplate.from_template(template)