pandas.core.reshape.merge 源代码

"""
SQL-style merge routines
"""

from __future__ import annotations

from collections.abc import (
    Hashable,
    Sequence,
)
import datetime
from functools import partial
from typing import (
    TYPE_CHECKING,
    Literal,
    cast,
    final,
)
import uuid
import warnings

import numpy as np

from pandas._libs import (
    Timedelta,
    hashtable as libhashtable,
    join as libjoin,
    lib,
)
from pandas._libs.lib import is_range_indexer
from pandas._typing import (
    AnyArrayLike,
    ArrayLike,
    IndexLabel,
    JoinHow,
    MergeHow,
    Shape,
    Suffixes,
    npt,
)
from pandas.errors import MergeError
from pandas.util._decorators import cache_readonly
from pandas.util._exceptions import find_stack_level

from pandas.core.dtypes.base import ExtensionDtype
from pandas.core.dtypes.cast import find_common_type
from pandas.core.dtypes.common import (
    ensure_int64,
    ensure_object,
    is_bool,
    is_bool_dtype,
    is_float_dtype,
    is_integer,
    is_integer_dtype,
    is_list_like,
    is_number,
    is_numeric_dtype,
    is_object_dtype,
    is_string_dtype,
    needs_i8_conversion,
)
from pandas.core.dtypes.dtypes import (
    CategoricalDtype,
    DatetimeTZDtype,
)
from pandas.core.dtypes.generic import (
    ABCDataFrame,
    ABCSeries,
)
from pandas.core.dtypes.missing import (
    isna,
    na_value_for_dtype,
)

from pandas import (
    ArrowDtype,
    Categorical,
    Index,
    MultiIndex,
    Series,
)
import pandas.core.algorithms as algos
from pandas.core.arrays import (
    ArrowExtensionArray,
    BaseMaskedArray,
    ExtensionArray,
)
from pandas.core.arrays.string_ import StringDtype
import pandas.core.common as com
from pandas.core.construction import (
    ensure_wrapped_if_datetimelike,
    extract_array,
)
from pandas.core.indexes.api import default_index
from pandas.core.sorting import (
    get_group_index,
    is_int64_overflow_possible,
)

if TYPE_CHECKING:
    from pandas import DataFrame
    from pandas.core import groupby
    from pandas.core.arrays import DatetimeArray
    from pandas.core.indexes.frozen import FrozenList

_factorizers = {
    np.int64: libhashtable.Int64Factorizer,
    np.longlong: libhashtable.Int64Factorizer,
    np.int32: libhashtable.Int32Factorizer,
    np.int16: libhashtable.Int16Factorizer,
    np.int8: libhashtable.Int8Factorizer,
    np.uint64: libhashtable.UInt64Factorizer,
    np.uint32: libhashtable.UInt32Factorizer,
    np.uint16: libhashtable.UInt16Factorizer,
    np.uint8: libhashtable.UInt8Factorizer,
    np.bool_: libhashtable.UInt8Factorizer,
    np.float64: libhashtable.Float64Factorizer,
    np.float32: libhashtable.Float32Factorizer,
    np.complex64: libhashtable.Complex64Factorizer,
    np.complex128: libhashtable.Complex128Factorizer,
    np.object_: libhashtable.ObjectFactorizer,
}

# See https://github.com/pandas-dev/pandas/issues/52451
if np.intc is not np.int32:
    _factorizers[np.intc] = libhashtable.Int64Factorizer

_known = (np.ndarray, ExtensionArray, Index, ABCSeries)


[文档] def merge( left: DataFrame | Series, right: DataFrame | Series, how: MergeHow = "inner", on: IndexLabel | AnyArrayLike | None = None, left_on: IndexLabel | AnyArrayLike | None = None, right_on: IndexLabel | AnyArrayLike | None = None, left_index: bool = False, right_index: bool = False, sort: bool = False, suffixes: Suffixes = ("_x", "_y"), copy: bool | lib.NoDefault = lib.no_default, indicator: str | bool = False, validate: str | None = None, ) -> DataFrame: """ Merge DataFrame or named Series objects with a database-style join. A named Series object is treated as a DataFrame with a single named column. The join is done on columns or indexes. If joining columns on columns, the DataFrame indexes *will be ignored*. Otherwise if joining indexes on indexes or indexes on a column or columns, the index will be passed on. When performing a cross merge, no column specifications to merge on are allowed. .. warning:: If both key columns contain rows where the key is a null value, those rows will be matched against each other. This is different from usual SQL join behaviour and can lead to unexpected results. Parameters ---------- left : DataFrame or named Series First pandas object to merge. right : DataFrame or named Series Second pandas object to merge. how : {'left', 'right', 'outer', 'inner', 'cross'}, default 'inner' Type of merge to be performed. * left: use only keys from left frame, similar to a SQL left outer join; preserve key order. * right: use only keys from right frame, similar to a SQL right outer join; preserve key order. * outer: use union of keys from both frames, similar to a SQL full outer join; sort keys lexicographically. * inner: use intersection of keys from both frames, similar to a SQL inner join; preserve the order of the left keys. * cross: creates the cartesian product from both frames, preserves the order of the left keys. on : label or list Column or index level names to join on. These must be found in both DataFrames. If `on` is None and not merging on indexes then this defaults to the intersection of the columns in both DataFrames. left_on : label or list, or array-like Column or index level names to join on in the left DataFrame. Can also be an array or list of arrays of the length of the left DataFrame. These arrays are treated as if they are columns. right_on : label or list, or array-like Column or index level names to join on in the right DataFrame. Can also be an array or list of arrays of the length of the right DataFrame. These arrays are treated as if they are columns. left_index : bool, default False Use the index from the left DataFrame as the join key(s). If it is a MultiIndex, the number of keys in the other DataFrame (either the index or a number of columns) must match the number of levels. right_index : bool, default False Use the index from the right DataFrame as the join key. Same caveats as left_index. sort : bool, default False Sort the join keys lexicographically in the result DataFrame. If False, the order of the join keys depends on the join type (how keyword). suffixes : list-like, default is ("_x", "_y") A length-2 sequence where each element is optionally a string indicating the suffix to add to overlapping column names in `left` and `right` respectively. Pass a value of `None` instead of a string to indicate that the column name from `left` or `right` should be left as-is, with no suffix. At least one of the values must not be None. copy : bool, default False If False, avoid copy if possible. .. note:: The `copy` keyword will change behavior in pandas 3.0. `Copy-on-Write <https://pandas.pydata.org/docs/dev/user_guide/copy_on_write.html>`__ will be enabled by default, which means that all methods with a `copy` keyword will use a lazy copy mechanism to defer the copy and ignore the `copy` keyword. The `copy` keyword will be removed in a future version of pandas. You can already get the future behavior and improvements through enabling copy on write ``pd.options.mode.copy_on_write = True`` .. deprecated:: 3.0.0 indicator : bool or str, default False If True, adds a column to the output DataFrame called "_merge" with information on the source of each row. The column can be given a different name by providing a string argument. The column will have a Categorical type with the value of "left_only" for observations whose merge key only appears in the left DataFrame, "right_only" for observations whose merge key only appears in the right DataFrame, and "both" if the observation's merge key is found in both DataFrames. validate : str, optional If specified, checks if merge is of specified type. * "one_to_one" or "1:1": check if merge keys are unique in both left and right datasets. * "one_to_many" or "1:m": check if merge keys are unique in left dataset. * "many_to_one" or "m:1": check if merge keys are unique in right dataset. * "many_to_many" or "m:m": allowed, but does not result in checks. Returns ------- DataFrame A DataFrame of the two merged objects. See Also -------- merge_ordered : Merge with optional filling/interpolation. merge_asof : Merge on nearest keys. DataFrame.join : Similar method using indices. Examples -------- >>> df1 = pd.DataFrame( ... {"lkey": ["foo", "bar", "baz", "foo"], "value": [1, 2, 3, 5]} ... ) >>> df2 = pd.DataFrame( ... {"rkey": ["foo", "bar", "baz", "foo"], "value": [5, 6, 7, 8]} ... ) >>> df1 lkey value 0 foo 1 1 bar 2 2 baz 3 3 foo 5 >>> df2 rkey value 0 foo 5 1 bar 6 2 baz 7 3 foo 8 Merge df1 and df2 on the lkey and rkey columns. The value columns have the default suffixes, _x and _y, appended. >>> df1.merge(df2, left_on="lkey", right_on="rkey") lkey value_x rkey value_y 0 foo 1 foo 5 1 foo 1 foo 8 2 bar 2 bar 6 3 baz 3 baz 7 4 foo 5 foo 5 5 foo 5 foo 8 Merge DataFrames df1 and df2 with specified left and right suffixes appended to any overlapping columns. >>> df1.merge(df2, left_on="lkey", right_on="rkey", suffixes=("_left", "_right")) lkey value_left rkey value_right 0 foo 1 foo 5 1 foo 1 foo 8 2 bar 2 bar 6 3 baz 3 baz 7 4 foo 5 foo 5 5 foo 5 foo 8 Merge DataFrames df1 and df2, but raise an exception if the DataFrames have any overlapping columns. >>> df1.merge(df2, left_on="lkey", right_on="rkey", suffixes=(False, False)) Traceback (most recent call last): ... ValueError: columns overlap but no suffix specified: Index(['value'], dtype='object') >>> df1 = pd.DataFrame({"a": ["foo", "bar"], "b": [1, 2]}) >>> df2 = pd.DataFrame({"a": ["foo", "baz"], "c": [3, 4]}) >>> df1 a b 0 foo 1 1 bar 2 >>> df2 a c 0 foo 3 1 baz 4 >>> df1.merge(df2, how="inner", on="a") a b c 0 foo 1 3 >>> df1.merge(df2, how="left", on="a") a b c 0 foo 1 3.0 1 bar 2 NaN >>> df1 = pd.DataFrame({"left": ["foo", "bar"]}) >>> df2 = pd.DataFrame({"right": [7, 8]}) >>> df1 left 0 foo 1 bar >>> df2 right 0 7 1 8 >>> df1.merge(df2, how="cross") left right 0 foo 7 1 foo 8 2 bar 7 3 bar 8 """ left_df = _validate_operand(left) left._check_copy_deprecation(copy) right_df = _validate_operand(right) if how == "cross": return _cross_merge( left_df, right_df, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, sort=sort, suffixes=suffixes, indicator=indicator, validate=validate, ) else: op = _MergeOperation( left_df, right_df, how=how, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, sort=sort, suffixes=suffixes, indicator=indicator, validate=validate, ) return op.get_result()
def _cross_merge( left: DataFrame, right: DataFrame, on: IndexLabel | AnyArrayLike | None = None, left_on: IndexLabel | AnyArrayLike | None = None, right_on: IndexLabel | AnyArrayLike | None = None, left_index: bool = False, right_index: bool = False, sort: bool = False, suffixes: Suffixes = ("_x", "_y"), indicator: str | bool = False, validate: str | None = None, ) -> DataFrame: """ See merge.__doc__ with how='cross' """ if ( left_index or right_index or right_on is not None or left_on is not None or on is not None ): raise MergeError( "Can not pass on, right_on, left_on or set right_index=True or " "left_index=True" ) cross_col = f"_cross_{uuid.uuid4()}" left = left.assign(**{cross_col: 1}) right = right.assign(**{cross_col: 1}) left_on = right_on = [cross_col] res = merge( left, right, how="inner", on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, sort=sort, suffixes=suffixes, indicator=indicator, validate=validate, ) del res[cross_col] return res def _groupby_and_merge( by, left: DataFrame | Series, right: DataFrame | Series, merge_pieces ): """ groupby & merge; we are always performing a left-by type operation Parameters ---------- by: field to group left: DataFrame right: DataFrame merge_pieces: function for merging """ pieces = [] if not isinstance(by, (list, tuple)): by = [by] lby = left.groupby(by, sort=False) rby: groupby.DataFrameGroupBy | groupby.SeriesGroupBy | None = None # if we can groupby the rhs # then we can get vastly better perf if all(item in right.columns for item in by): rby = right.groupby(by, sort=False) for key, lhs in lby._grouper.get_iterator(lby._selected_obj): if rby is None: rhs = right else: try: rhs = right.take(rby.indices[key]) except KeyError: # key doesn't exist in left lcols = lhs.columns.tolist() cols = lcols + [r for r in right.columns if r not in set(lcols)] merged = lhs.reindex(columns=cols) merged.index = range(len(merged)) pieces.append(merged) continue merged = merge_pieces(lhs, rhs) # make sure join keys are in the merged # TODO, should merge_pieces do this? merged[by] = key pieces.append(merged) # preserve the original order # if we have a missing piece this can be reset from pandas.core.reshape.concat import concat result = concat(pieces, ignore_index=True) result = result.reindex(columns=pieces[0].columns) return result, lby
[文档] def merge_ordered( left: DataFrame | Series, right: DataFrame | Series, on: IndexLabel | None = None, left_on: IndexLabel | None = None, right_on: IndexLabel | None = None, left_by=None, right_by=None, fill_method: str | None = None, suffixes: Suffixes = ("_x", "_y"), how: JoinHow = "outer", ) -> DataFrame: """ Perform a merge for ordered data with optional filling/interpolation. Designed for ordered data like time series data. Optionally perform group-wise merge (see examples). Parameters ---------- left : DataFrame or named Series First pandas object to merge. right : DataFrame or named Series Second pandas object to merge. on : label or list Field names to join on. Must be found in both DataFrames. left_on : label or list, or array-like Field names to join on in left DataFrame. Can be a vector or list of vectors of the length of the DataFrame to use a particular vector as the join key instead of columns. right_on : label or list, or array-like Field names to join on in right DataFrame or vector/list of vectors per left_on docs. left_by : column name or list of column names Group left DataFrame by group columns and merge piece by piece with right DataFrame. Must be None if either left or right are a Series. right_by : column name or list of column names Group right DataFrame by group columns and merge piece by piece with left DataFrame. Must be None if either left or right are a Series. fill_method : {'ffill', None}, default None Interpolation method for data. suffixes : list-like, default is ("_x", "_y") A length-2 sequence where each element is optionally a string indicating the suffix to add to overlapping column names in `left` and `right` respectively. Pass a value of `None` instead of a string to indicate that the column name from `left` or `right` should be left as-is, with no suffix. At least one of the values must not be None. how : {'left', 'right', 'outer', 'inner'}, default 'outer' * left: use only keys from left frame (SQL: left outer join) * right: use only keys from right frame (SQL: right outer join) * outer: use union of keys from both frames (SQL: full outer join) * inner: use intersection of keys from both frames (SQL: inner join). Returns ------- DataFrame The merged DataFrame output type will be the same as 'left', if it is a subclass of DataFrame. See Also -------- merge : Merge with a database-style join. merge_asof : Merge on nearest keys. Examples -------- >>> from pandas import merge_ordered >>> df1 = pd.DataFrame( ... { ... "key": ["a", "c", "e", "a", "c", "e"], ... "lvalue": [1, 2, 3, 1, 2, 3], ... "group": ["a", "a", "a", "b", "b", "b"], ... } ... ) >>> df1 key lvalue group 0 a 1 a 1 c 2 a 2 e 3 a 3 a 1 b 4 c 2 b 5 e 3 b >>> df2 = pd.DataFrame({"key": ["b", "c", "d"], "rvalue": [1, 2, 3]}) >>> df2 key rvalue 0 b 1 1 c 2 2 d 3 >>> merge_ordered(df1, df2, fill_method="ffill", left_by="group") key lvalue group rvalue 0 a 1 a NaN 1 b 1 a 1.0 2 c 2 a 2.0 3 d 2 a 3.0 4 e 3 a 3.0 5 a 1 b NaN 6 b 1 b 1.0 7 c 2 b 2.0 8 d 2 b 3.0 9 e 3 b 3.0 """ def _merger(x, y) -> DataFrame: # perform the ordered merge operation op = _OrderedMerge( x, y, on=on, left_on=left_on, right_on=right_on, suffixes=suffixes, fill_method=fill_method, how=how, ) return op.get_result() if left_by is not None and right_by is not None: raise ValueError("Can only group either left or right frames") if left_by is not None: if isinstance(left_by, str): left_by = [left_by] check = set(left_by).difference(left.columns) if len(check) != 0: raise KeyError(f"{check} not found in left columns") result, _ = _groupby_and_merge(left_by, left, right, lambda x, y: _merger(x, y)) elif right_by is not None: if isinstance(right_by, str): right_by = [right_by] check = set(right_by).difference(right.columns) if len(check) != 0: raise KeyError(f"{check} not found in right columns") result, _ = _groupby_and_merge( right_by, right, left, lambda x, y: _merger(y, x) ) else: result = _merger(left, right) return result
[文档] def merge_asof( left: DataFrame | Series, right: DataFrame | Series, on: IndexLabel | None = None, left_on: IndexLabel | None = None, right_on: IndexLabel | None = None, left_index: bool = False, right_index: bool = False, by=None, left_by=None, right_by=None, suffixes: Suffixes = ("_x", "_y"), tolerance: int | datetime.timedelta | None = None, allow_exact_matches: bool = True, direction: str = "backward", ) -> DataFrame: """ Perform a merge by key distance. This is similar to a left-join except that we match on nearest key rather than equal keys. Both DataFrames must be sorted by the key. For each row in the left DataFrame: - A "backward" search selects the last row in the right DataFrame whose 'on' key is less than or equal to the left's key. - A "forward" search selects the first row in the right DataFrame whose 'on' key is greater than or equal to the left's key. - A "nearest" search selects the row in the right DataFrame whose 'on' key is closest in absolute distance to the left's key. Optionally match on equivalent keys with 'by' before searching with 'on'. Parameters ---------- left : DataFrame or named Series First pandas object to merge. right : DataFrame or named Series Second pandas object to merge. on : label Field name to join on. Must be found in both DataFrames. The data MUST be ordered. Furthermore this must be a numeric column, such as datetimelike, integer, or float. On or left_on/right_on must be given. left_on : label Field name to join on in left DataFrame. right_on : label Field name to join on in right DataFrame. left_index : bool Use the index of the left DataFrame as the join key. right_index : bool Use the index of the right DataFrame as the join key. by : column name or list of column names Match on these columns before performing merge operation. left_by : column name Field names to match on in the left DataFrame. right_by : column name Field names to match on in the right DataFrame. suffixes : 2-length sequence (tuple, list, ...) Suffix to apply to overlapping column names in the left and right side, respectively. tolerance : int or timedelta, optional, default None Select asof tolerance within this range; must be compatible with the merge index. allow_exact_matches : bool, default True - If True, allow matching with the same 'on' value (i.e. less-than-or-equal-to / greater-than-or-equal-to) - If False, don't match the same 'on' value (i.e., strictly less-than / strictly greater-than). direction : 'backward' (default), 'forward', or 'nearest' Whether to search for prior, subsequent, or closest matches. Returns ------- DataFrame A DataFrame of the two merged objects. See Also -------- merge : Merge with a database-style join. merge_ordered : Merge with optional filling/interpolation. Examples -------- >>> left = pd.DataFrame({"a": [1, 5, 10], "left_val": ["a", "b", "c"]}) >>> left a left_val 0 1 a 1 5 b 2 10 c >>> right = pd.DataFrame({"a": [1, 2, 3, 6, 7], "right_val": [1, 2, 3, 6, 7]}) >>> right a right_val 0 1 1 1 2 2 2 3 3 3 6 6 4 7 7 >>> pd.merge_asof(left, right, on="a") a left_val right_val 0 1 a 1 1 5 b 3 2 10 c 7 >>> pd.merge_asof(left, right, on="a", allow_exact_matches=False) a left_val right_val 0 1 a NaN 1 5 b 3.0 2 10 c 7.0 >>> pd.merge_asof(left, right, on="a", direction="forward") a left_val right_val 0 1 a 1.0 1 5 b 6.0 2 10 c NaN >>> pd.merge_asof(left, right, on="a", direction="nearest") a left_val right_val 0 1 a 1 1 5 b 6 2 10 c 7 We can use indexed DataFrames as well. >>> left = pd.DataFrame({"left_val": ["a", "b", "c"]}, index=[1, 5, 10]) >>> left left_val 1 a 5 b 10 c >>> right = pd.DataFrame({"right_val": [1, 2, 3, 6, 7]}, index=[1, 2, 3, 6, 7]) >>> right right_val 1 1 2 2 3 3 6 6 7 7 >>> pd.merge_asof(left, right, left_index=True, right_index=True) left_val right_val 1 a 1 5 b 3 10 c 7 Here is a real-world times-series example >>> quotes = pd.DataFrame( ... { ... "time": [ ... pd.Timestamp("2016-05-25 13:30:00.023"), ... pd.Timestamp("2016-05-25 13:30:00.023"), ... pd.Timestamp("2016-05-25 13:30:00.030"), ... pd.Timestamp("2016-05-25 13:30:00.041"), ... pd.Timestamp("2016-05-25 13:30:00.048"), ... pd.Timestamp("2016-05-25 13:30:00.049"), ... pd.Timestamp("2016-05-25 13:30:00.072"), ... pd.Timestamp("2016-05-25 13:30:00.075"), ... ], ... "ticker": [ ... "GOOG", ... "MSFT", ... "MSFT", ... "MSFT", ... "GOOG", ... "AAPL", ... "GOOG", ... "MSFT", ... ], ... "bid": [720.50, 51.95, 51.97, 51.99, 720.50, 97.99, 720.50, 52.01], ... "ask": [720.93, 51.96, 51.98, 52.00, 720.93, 98.01, 720.88, 52.03], ... } ... ) >>> quotes time ticker bid ask 0 2016-05-25 13:30:00.023 GOOG 720.50 720.93 1 2016-05-25 13:30:00.023 MSFT 51.95 51.96 2 2016-05-25 13:30:00.030 MSFT 51.97 51.98 3 2016-05-25 13:30:00.041 MSFT 51.99 52.00 4 2016-05-25 13:30:00.048 GOOG 720.50 720.93 5 2016-05-25 13:30:00.049 AAPL 97.99 98.01 6 2016-05-25 13:30:00.072 GOOG 720.50 720.88 7 2016-05-25 13:30:00.075 MSFT 52.01 52.03 >>> trades = pd.DataFrame( ... { ... "time": [ ... pd.Timestamp("2016-05-25 13:30:00.023"), ... pd.Timestamp("2016-05-25 13:30:00.038"), ... pd.Timestamp("2016-05-25 13:30:00.048"), ... pd.Timestamp("2016-05-25 13:30:00.048"), ... pd.Timestamp("2016-05-25 13:30:00.048"), ... ], ... "ticker": ["MSFT", "MSFT", "GOOG", "GOOG", "AAPL"], ... "price": [51.95, 51.95, 720.77, 720.92, 98.0], ... "quantity": [75, 155, 100, 100, 100], ... } ... ) >>> trades time ticker price quantity 0 2016-05-25 13:30:00.023 MSFT 51.95 75 1 2016-05-25 13:30:00.038 MSFT 51.95 155 2 2016-05-25 13:30:00.048 GOOG 720.77 100 3 2016-05-25 13:30:00.048 GOOG 720.92 100 4 2016-05-25 13:30:00.048 AAPL 98.00 100 By default we are taking the asof of the quotes >>> pd.merge_asof(trades, quotes, on="time", by="ticker") time ticker price quantity bid ask 0 2016-05-25 13:30:00.023 MSFT 51.95 75 51.95 51.96 1 2016-05-25 13:30:00.038 MSFT 51.95 155 51.97 51.98 2 2016-05-25 13:30:00.048 GOOG 720.77 100 720.50 720.93 3 2016-05-25 13:30:00.048 GOOG 720.92 100 720.50 720.93 4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN We only asof within 2ms between the quote time and the trade time >>> pd.merge_asof( ... trades, quotes, on="time", by="ticker", tolerance=pd.Timedelta("2ms") ... ) time ticker price quantity bid ask 0 2016-05-25 13:30:00.023 MSFT 51.95 75 51.95 51.96 1 2016-05-25 13:30:00.038 MSFT 51.95 155 NaN NaN 2 2016-05-25 13:30:00.048 GOOG 720.77 100 720.50 720.93 3 2016-05-25 13:30:00.048 GOOG 720.92 100 720.50 720.93 4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN We only asof within 10ms between the quote time and the trade time and we exclude exact matches on time. However *prior* data will propagate forward >>> pd.merge_asof( ... trades, ... quotes, ... on="time", ... by="ticker", ... tolerance=pd.Timedelta("10ms"), ... allow_exact_matches=False, ... ) time ticker price quantity bid ask 0 2016-05-25 13:30:00.023 MSFT 51.95 75 NaN NaN 1 2016-05-25 13:30:00.038 MSFT 51.95 155 51.97 51.98 2 2016-05-25 13:30:00.048 GOOG 720.77 100 NaN NaN 3 2016-05-25 13:30:00.048 GOOG 720.92 100 NaN NaN 4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN """ op = _AsOfMerge( left, right, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, by=by, left_by=left_by, right_by=right_by, suffixes=suffixes, how="asof", tolerance=tolerance, allow_exact_matches=allow_exact_matches, direction=direction, ) return op.get_result()
# TODO: transformations?? class _MergeOperation: """ Perform a database (SQL) merge operation between two DataFrame or Series objects using either columns as keys or their row indexes """ _merge_type = "merge" how: JoinHow | Literal["asof"] on: IndexLabel | None # left_on/right_on may be None when passed, but in validate_specification # get replaced with non-None. left_on: Sequence[Hashable | AnyArrayLike] right_on: Sequence[Hashable | AnyArrayLike] left_index: bool right_index: bool sort: bool suffixes: Suffixes indicator: str | bool validate: str | None join_names: list[Hashable] right_join_keys: list[ArrayLike] left_join_keys: list[ArrayLike] def __init__( self, left: DataFrame | Series, right: DataFrame | Series, how: JoinHow | Literal["asof"] = "inner", on: IndexLabel | AnyArrayLike | None = None, left_on: IndexLabel | AnyArrayLike | None = None, right_on: IndexLabel | AnyArrayLike | None = None, left_index: bool = False, right_index: bool = False, sort: bool = True, suffixes: Suffixes = ("_x", "_y"), indicator: str | bool = False, validate: str | None = None, ) -> None: _left = _validate_operand(left) _right = _validate_operand(right) self.left = self.orig_left = _left self.right = self.orig_right = _right self.how = how self.on = com.maybe_make_list(on) self.suffixes = suffixes self.sort = sort or how == "outer" self.left_index = left_index self.right_index = right_index self.indicator = indicator if not is_bool(left_index): raise ValueError( f"left_index parameter must be of type bool, not {type(left_index)}" ) if not is_bool(right_index): raise ValueError( f"right_index parameter must be of type bool, not {type(right_index)}" ) # GH 40993: raise when merging between different levels; enforced in 2.0 if _left.columns.nlevels != _right.columns.nlevels: msg = ( "Not allowed to merge between different levels. " f"({_left.columns.nlevels} levels on the left, " f"{_right.columns.nlevels} on the right)" ) raise MergeError(msg) # GH 59435: raise when "how" is not a valid Merge type merge_type = {"left", "right", "inner", "outer", "cross", "asof"} if how not in merge_type: raise ValueError( f"'{how}' is not a valid Merge type: " f"left, right, inner, outer, cross, asof" ) self.left_on, self.right_on = self._validate_left_right_on(left_on, right_on) ( self.left_join_keys, self.right_join_keys, self.join_names, left_drop, right_drop, ) = self._get_merge_keys() if left_drop: self.left = self.left._drop_labels_or_levels(left_drop) if right_drop: self.right = self.right._drop_labels_or_levels(right_drop) self._maybe_require_matching_dtypes(self.left_join_keys, self.right_join_keys) self._validate_tolerance(self.left_join_keys) # validate the merge keys dtypes. We may need to coerce # to avoid incompatible dtypes self._maybe_coerce_merge_keys() # If argument passed to validate, # check if columns specified as unique # are in fact unique. if validate is not None: self._validate_validate_kwd(validate) def _maybe_require_matching_dtypes( self, left_join_keys: list[ArrayLike], right_join_keys: list[ArrayLike] ) -> None: # Overridden by AsOfMerge pass def _validate_tolerance(self, left_join_keys: list[ArrayLike]) -> None: # Overridden by AsOfMerge pass @final def _reindex_and_concat( self, join_index: Index, left_indexer: npt.NDArray[np.intp] | None, right_indexer: npt.NDArray[np.intp] | None, ) -> DataFrame: """ reindex along index and concat along columns. """ # Take views so we do not alter the originals left = self.left[:] right = self.right[:] llabels, rlabels = _items_overlap_with_suffix( self.left._info_axis, self.right._info_axis, self.suffixes ) if left_indexer is not None and not is_range_indexer(left_indexer, len(left)): # Pinning the index here (and in the right code just below) is not # necessary, but makes the `.take` more performant if we have e.g. # a MultiIndex for left.index. lmgr = left._mgr.reindex_indexer( join_index, left_indexer, axis=1, only_slice=True, allow_dups=True, use_na_proxy=True, ) left = left._constructor_from_mgr(lmgr, axes=lmgr.axes) left.index = join_index if right_indexer is not None and not is_range_indexer( right_indexer, len(right) ): rmgr = right._mgr.reindex_indexer( join_index, right_indexer, axis=1, only_slice=True, allow_dups=True, use_na_proxy=True, ) right = right._constructor_from_mgr(rmgr, axes=rmgr.axes) right.index = join_index from pandas import concat left.columns = llabels right.columns = rlabels result = concat([left, right], axis=1) return result def get_result(self) -> DataFrame: if self.indicator: self.left, self.right = self._indicator_pre_merge(self.left, self.right) join_index, left_indexer, right_indexer = self._get_join_info() result = self._reindex_and_concat(join_index, left_indexer, right_indexer) result = result.__finalize__(self, method=self._merge_type) if self.indicator: result = self._indicator_post_merge(result) self._maybe_add_join_keys(result, left_indexer, right_indexer) self._maybe_restore_index_levels(result) return result.__finalize__(self, method="merge") @final @cache_readonly def _indicator_name(self) -> str | None: if isinstance(self.indicator, str): return self.indicator elif isinstance(self.indicator, bool): return "_merge" if self.indicator else None else: raise ValueError( "indicator option can only accept boolean or string arguments" ) @final def _indicator_pre_merge( self, left: DataFrame, right: DataFrame ) -> tuple[DataFrame, DataFrame]: columns = left.columns.union(right.columns) for i in ["_left_indicator", "_right_indicator"]: if i in columns: raise ValueError( "Cannot use `indicator=True` option when " f"data contains a column named {i}" ) if self._indicator_name in columns: raise ValueError( "Cannot use name of an existing column for indicator column" ) left = left.copy() right = right.copy() left["_left_indicator"] = 1 left["_left_indicator"] = left["_left_indicator"].astype("int8") right["_right_indicator"] = 2 right["_right_indicator"] = right["_right_indicator"].astype("int8") return left, right @final def _indicator_post_merge(self, result: DataFrame) -> DataFrame: result["_left_indicator"] = result["_left_indicator"].fillna(0) result["_right_indicator"] = result["_right_indicator"].fillna(0) result[self._indicator_name] = Categorical( (result["_left_indicator"] + result["_right_indicator"]), categories=[1, 2, 3], ) result[self._indicator_name] = result[ self._indicator_name ].cat.rename_categories(["left_only", "right_only", "both"]) result = result.drop(labels=["_left_indicator", "_right_indicator"], axis=1) return result @final def _maybe_restore_index_levels(self, result: DataFrame) -> None: """ Restore index levels specified as `on` parameters Here we check for cases where `self.left_on` and `self.right_on` pairs each reference an index level in their respective DataFrames. The joined columns corresponding to these pairs are then restored to the index of `result`. **Note:** This method has side effects. It modifies `result` in-place Parameters ---------- result: DataFrame merge result Returns ------- None """ names_to_restore = [] for name, left_key, right_key in zip( self.join_names, self.left_on, self.right_on ): if ( # Argument 1 to "_is_level_reference" of "NDFrame" has incompatible # type "Union[Hashable, ExtensionArray, Index, Series]"; expected # "Hashable" self.orig_left._is_level_reference(left_key) # type: ignore[arg-type] # Argument 1 to "_is_level_reference" of "NDFrame" has incompatible # type "Union[Hashable, ExtensionArray, Index, Series]"; expected # "Hashable" and self.orig_right._is_level_reference( right_key # type: ignore[arg-type] ) and left_key == right_key and name not in result.index.names ): names_to_restore.append(name) if names_to_restore: result.set_index(names_to_restore, inplace=True) @final def _maybe_add_join_keys( self, result: DataFrame, left_indexer: npt.NDArray[np.intp] | None, right_indexer: npt.NDArray[np.intp] | None, ) -> None: left_has_missing = None right_has_missing = None assert all(isinstance(x, _known) for x in self.left_join_keys) keys = zip(self.join_names, self.left_on, self.right_on) for i, (name, lname, rname) in enumerate(keys): if not _should_fill(lname, rname): continue take_left, take_right = None, None if name in result: if left_indexer is not None or right_indexer is not None: if name in self.left: if left_has_missing is None: left_has_missing = ( False if left_indexer is None else (left_indexer == -1).any() ) if left_has_missing: take_right = self.right_join_keys[i] if result[name].dtype != self.left[name].dtype: take_left = self.left[name]._values elif name in self.right: if right_has_missing is None: right_has_missing = ( False if right_indexer is None else (right_indexer == -1).any() ) if right_has_missing: take_left = self.left_join_keys[i] if result[name].dtype != self.right[name].dtype: take_right = self.right[name]._values else: take_left = self.left_join_keys[i] take_right = self.right_join_keys[i] if take_left is not None or take_right is not None: if take_left is None: lvals = result[name]._values elif left_indexer is None: lvals = take_left else: # TODO: can we pin down take_left's type earlier? take_left = extract_array(take_left, extract_numpy=True) lfill = na_value_for_dtype(take_left.dtype) lvals = algos.take_nd(take_left, left_indexer, fill_value=lfill) if take_right is None: rvals = result[name]._values elif right_indexer is None: rvals = take_right else: # TODO: can we pin down take_right's type earlier? taker = extract_array(take_right, extract_numpy=True) rfill = na_value_for_dtype(taker.dtype) rvals = algos.take_nd(taker, right_indexer, fill_value=rfill) # if we have an all missing left_indexer # make sure to just use the right values or vice-versa if left_indexer is not None and (left_indexer == -1).all(): key_col = Index(rvals) result_dtype = rvals.dtype elif right_indexer is not None and (right_indexer == -1).all(): key_col = Index(lvals) result_dtype = lvals.dtype else: key_col = Index(lvals) if left_indexer is not None: mask_left = left_indexer == -1 key_col = key_col.where(~mask_left, rvals) result_dtype = find_common_type([lvals.dtype, rvals.dtype]) if ( lvals.dtype.kind == "M" and rvals.dtype.kind == "M" and result_dtype.kind == "O" ): # TODO(non-nano) Workaround for common_type not dealing # with different resolutions result_dtype = key_col.dtype if result._is_label_reference(name): result[name] = result._constructor_sliced( key_col, dtype=result_dtype, index=result.index ) elif result._is_level_reference(name): if isinstance(result.index, MultiIndex): key_col.name = name idx_list = [ result.index.get_level_values(level_name) if level_name != name else key_col for level_name in result.index.names ] result.set_index(idx_list, inplace=True) else: result.index = Index(key_col, name=name) else: result.insert(i, name or f"key_{i}", key_col) def _get_join_indexers( self, ) -> tuple[npt.NDArray[np.intp] | None, npt.NDArray[np.intp] | None]: """return the join indexers""" # make mypy happy assert self.how != "asof" return get_join_indexers( self.left_join_keys, self.right_join_keys, sort=self.sort, how=self.how ) @final def _get_join_info( self, ) -> tuple[Index, npt.NDArray[np.intp] | None, npt.NDArray[np.intp] | None]: left_ax = self.left.index right_ax = self.right.index if self.left_index and self.right_index and self.how != "asof": join_index, left_indexer, right_indexer = left_ax.join( right_ax, how=self.how, return_indexers=True, sort=self.sort ) elif self.right_index and self.how == "left": join_index, left_indexer, right_indexer = _left_join_on_index( left_ax, right_ax, self.left_join_keys, sort=self.sort ) elif self.left_index and self.how == "right": join_index, right_indexer, left_indexer = _left_join_on_index( right_ax, left_ax, self.right_join_keys, sort=self.sort ) else: (left_indexer, right_indexer) = self._get_join_indexers() if self.right_index: if len(self.left) > 0: join_index = self._create_join_index( left_ax, right_ax, left_indexer, how="right", ) elif right_indexer is None: join_index = right_ax.copy() else: join_index = right_ax.take(right_indexer) elif self.left_index: if self.how == "asof": # GH#33463 asof should always behave like a left merge join_index = self._create_join_index( left_ax, right_ax, left_indexer, how="left", ) elif len(self.right) > 0: join_index = self._create_join_index( right_ax, left_ax, right_indexer, how="left", ) elif left_indexer is None: join_index = left_ax.copy() else: join_index = left_ax.take(left_indexer) else: n = len(left_ax) if left_indexer is None else len(left_indexer) join_index = default_index(n) return join_index, left_indexer, right_indexer @final def _create_join_index( self, index: Index, other_index: Index, indexer: npt.NDArray[np.intp] | None, how: JoinHow = "left", ) -> Index: """ Create a join index by rearranging one index to match another Parameters ---------- index : Index index being rearranged other_index : Index used to supply values not found in index indexer : np.ndarray[np.intp] or None how to rearrange index how : str Replacement is only necessary if indexer based on other_index. Returns ------- Index """ if self.how in (how, "outer") and not isinstance(other_index, MultiIndex): # if final index requires values in other_index but not target # index, indexer may hold missing (-1) values, causing Index.take # to take the final value in target index. So, we set the last # element to be the desired fill value. We do not use allow_fill # and fill_value because it throws a ValueError on integer indices mask = indexer == -1 if np.any(mask): fill_value = na_value_for_dtype(index.dtype, compat=False) index = index.append(Index([fill_value])) if indexer is None: return index.copy() return index.take(indexer) @final def _get_merge_keys( self, ) -> tuple[ list[ArrayLike], list[ArrayLike], list[Hashable], list[Hashable], list[Hashable], ]: """ Returns ------- left_keys, right_keys, join_names, left_drop, right_drop """ left_keys: list[ArrayLike] = [] right_keys: list[ArrayLike] = [] join_names: list[Hashable] = [] right_drop: list[Hashable] = [] left_drop: list[Hashable] = [] left, right = self.left, self.right is_lkey = lambda x: isinstance(x, _known) and len(x) == len(left) is_rkey = lambda x: isinstance(x, _known) and len(x) == len(right) # Note that pd.merge_asof() has separate 'on' and 'by' parameters. A # user could, for example, request 'left_index' and 'left_by'. In a # regular pd.merge(), users cannot specify both 'left_index' and # 'left_on'. (Instead, users have a MultiIndex). That means the # self.left_on in this function is always empty in a pd.merge(), but # a pd.merge_asof(left_index=True, left_by=...) will result in a # self.left_on array with a None in the middle of it. This requires # a work-around as designated in the code below. # See _validate_left_right_on() for where this happens. # ugh, spaghetti re #733 if _any(self.left_on) and _any(self.right_on): for lk, rk in zip(self.left_on, self.right_on): lk = extract_array(lk, extract_numpy=True) rk = extract_array(rk, extract_numpy=True) if is_lkey(lk): lk = cast(ArrayLike, lk) left_keys.append(lk) if is_rkey(rk): rk = cast(ArrayLike, rk) right_keys.append(rk) join_names.append(None) # what to do? else: # Then we're either Hashable or a wrong-length arraylike, # the latter of which will raise rk = cast(Hashable, rk) if rk is not None: right_keys.append(right._get_label_or_level_values(rk)) join_names.append(rk) else: # work-around for merge_asof(right_index=True) right_keys.append(right.index._values) join_names.append(right.index.name) else: if not is_rkey(rk): # Then we're either Hashable or a wrong-length arraylike, # the latter of which will raise rk = cast(Hashable, rk) if rk is not None: right_keys.append(right._get_label_or_level_values(rk)) else: # work-around for merge_asof(right_index=True) right_keys.append(right.index._values) if lk is not None and lk == rk: # FIXME: what about other NAs? right_drop.append(rk) else: rk = cast(ArrayLike, rk) right_keys.append(rk) if lk is not None: # Then we're either Hashable or a wrong-length arraylike, # the latter of which will raise lk = cast(Hashable, lk) left_keys.append(left._get_label_or_level_values(lk)) join_names.append(lk) else: # work-around for merge_asof(left_index=True) left_keys.append(left.index._values) join_names.append(left.index.name) elif _any(self.left_on): for k in self.left_on: if is_lkey(k): k = extract_array(k, extract_numpy=True) k = cast(ArrayLike, k) left_keys.append(k) join_names.append(None) else: # Then we're either Hashable or a wrong-length arraylike, # the latter of which will raise k = cast(Hashable, k) left_keys.append(left._get_label_or_level_values(k)) join_names.append(k) if isinstance(self.right.index, MultiIndex): right_keys = [ lev._values.take(lev_codes) for lev, lev_codes in zip( self.right.index.levels, self.right.index.codes ) ] else: right_keys = [self.right.index._values] elif _any(self.right_on): for k in self.right_on: k = extract_array(k, extract_numpy=True) if is_rkey(k): k = cast(ArrayLike, k) right_keys.append(k) join_names.append(None) else: # Then we're either Hashable or a wrong-length arraylike, # the latter of which will raise k = cast(Hashable, k) right_keys.append(right._get_label_or_level_values(k)) join_names.append(k) if isinstance(self.left.index, MultiIndex): left_keys = [ lev._values.take(lev_codes) for lev, lev_codes in zip( self.left.index.levels, self.left.index.codes ) ] else: left_keys = [self.left.index._values] return left_keys, right_keys, join_names, left_drop, right_drop @final def _maybe_coerce_merge_keys(self) -> None: # we have valid merges but we may have to further # coerce these if they are originally incompatible types # # for example if these are categorical, but are not dtype_equal # or if we have object and integer dtypes for lk, rk, name in zip( self.left_join_keys, self.right_join_keys, self.join_names ): if (len(lk) and not len(rk)) or (not len(lk) and len(rk)): continue lk = extract_array(lk, extract_numpy=True) rk = extract_array(rk, extract_numpy=True) lk_is_cat = isinstance(lk.dtype, CategoricalDtype) rk_is_cat = isinstance(rk.dtype, CategoricalDtype) lk_is_object_or_string = is_object_dtype(lk.dtype) or is_string_dtype( lk.dtype ) rk_is_object_or_string = is_object_dtype(rk.dtype) or is_string_dtype( rk.dtype ) # if either left or right is a categorical # then the must match exactly in categories & ordered if lk_is_cat and rk_is_cat: lk = cast(Categorical, lk) rk = cast(Categorical, rk) if lk._categories_match_up_to_permutation(rk): continue elif lk_is_cat or rk_is_cat: pass elif lk.dtype == rk.dtype: continue msg = ( f"You are trying to merge on {lk.dtype} and {rk.dtype} columns " f"for key '{name}'. If you wish to proceed you should use pd.concat" ) # if we are numeric, then allow differing # kinds to proceed, eg. int64 and int8, int and float # further if we are object, but we infer to # the same, then proceed if is_numeric_dtype(lk.dtype) and is_numeric_dtype(rk.dtype): if lk.dtype.kind == rk.dtype.kind: continue if isinstance(lk.dtype, ExtensionDtype) and not isinstance( rk.dtype, ExtensionDtype ): ct = find_common_type([lk.dtype, rk.dtype]) if isinstance(ct, ExtensionDtype): com_cls = ct.construct_array_type() rk = com_cls._from_sequence(rk, dtype=ct, copy=False) else: rk = rk.astype(ct) elif isinstance(rk.dtype, ExtensionDtype): ct = find_common_type([lk.dtype, rk.dtype]) if isinstance(ct, ExtensionDtype): com_cls = ct.construct_array_type() lk = com_cls._from_sequence(lk, dtype=ct, copy=False) else: lk = lk.astype(ct) # check whether ints and floats if is_integer_dtype(rk.dtype) and is_float_dtype(lk.dtype): # GH 47391 numpy > 1.24 will raise a RuntimeError for nan -> int with np.errstate(invalid="ignore"): # error: Argument 1 to "astype" of "ndarray" has incompatible # type "Union[ExtensionDtype, Any, dtype[Any]]"; expected # "Union[dtype[Any], Type[Any], _SupportsDType[dtype[Any]]]" casted = lk.astype(rk.dtype) # type: ignore[arg-type] mask = ~np.isnan(lk) match = lk == casted if not match[mask].all(): warnings.warn( "You are merging on int and float " "columns where the float values " "are not equal to their int representation.", UserWarning, stacklevel=find_stack_level(), ) continue if is_float_dtype(rk.dtype) and is_integer_dtype(lk.dtype): # GH 47391 numpy > 1.24 will raise a RuntimeError for nan -> int with np.errstate(invalid="ignore"): # error: Argument 1 to "astype" of "ndarray" has incompatible # type "Union[ExtensionDtype, Any, dtype[Any]]"; expected # "Union[dtype[Any], Type[Any], _SupportsDType[dtype[Any]]]" casted = rk.astype(lk.dtype) # type: ignore[arg-type] mask = ~np.isnan(rk) match = rk == casted if not match[mask].all(): warnings.warn( "You are merging on int and float " "columns where the float values " "are not equal to their int representation.", UserWarning, stacklevel=find_stack_level(), ) continue # let's infer and see if we are ok if lib.infer_dtype(lk, skipna=False) == lib.infer_dtype( rk, skipna=False ): continue # Check if we are trying to merge on obviously # incompatible dtypes GH 9780, GH 15800 # bool values are coerced to object elif (lk_is_object_or_string and is_bool_dtype(rk.dtype)) or ( is_bool_dtype(lk.dtype) and rk_is_object_or_string ): pass # object values are allowed to be merged elif (lk_is_object_or_string and is_numeric_dtype(rk.dtype)) or ( is_numeric_dtype(lk.dtype) and rk_is_object_or_string ): inferred_left = lib.infer_dtype(lk, skipna=False) inferred_right = lib.infer_dtype(rk, skipna=False) bool_types = ["integer", "mixed-integer", "boolean", "empty"] string_types = ["string", "unicode", "mixed", "bytes", "empty"] # inferred bool if inferred_left in bool_types and inferred_right in bool_types: pass # unless we are merging non-string-like with string-like elif ( inferred_left in string_types and inferred_right not in string_types ) or ( inferred_right in string_types and inferred_left not in string_types ): raise ValueError(msg) # datetimelikes must match exactly elif needs_i8_conversion(lk.dtype) and not needs_i8_conversion(rk.dtype): raise ValueError(msg) elif not needs_i8_conversion(lk.dtype) and needs_i8_conversion(rk.dtype): raise ValueError(msg) elif isinstance(lk.dtype, DatetimeTZDtype) and not isinstance( rk.dtype, DatetimeTZDtype ): raise ValueError(msg) elif not isinstance(lk.dtype, DatetimeTZDtype) and isinstance( rk.dtype, DatetimeTZDtype ): raise ValueError(msg) elif ( isinstance(lk.dtype, DatetimeTZDtype) and isinstance(rk.dtype, DatetimeTZDtype) ) or (lk.dtype.kind == "M" and rk.dtype.kind == "M"): # allows datetime with different resolutions continue # datetime and timedelta not allowed elif lk.dtype.kind == "M" and rk.dtype.kind == "m": raise ValueError(msg) elif lk.dtype.kind == "m" and rk.dtype.kind == "M": raise ValueError(msg) elif is_object_dtype(lk.dtype) and is_object_dtype(rk.dtype): continue # Houston, we have a problem! # let's coerce to object if the dtypes aren't # categorical, otherwise coerce to the category # dtype. If we coerced categories to object, # then we would lose type information on some # columns, and end up trying to merge # incompatible dtypes. See GH 16900. if name in self.left.columns: typ = cast(Categorical, lk).categories.dtype if lk_is_cat else object self.left = self.left.copy() self.left[name] = self.left[name].astype(typ) if name in self.right.columns: typ = cast(Categorical, rk).categories.dtype if rk_is_cat else object self.right = self.right.copy() self.right[name] = self.right[name].astype(typ) def _validate_left_right_on(self, left_on, right_on): left_on = com.maybe_make_list(left_on) right_on = com.maybe_make_list(right_on) # Hm, any way to make this logic less complicated?? if self.on is None and left_on is None and right_on is None: if self.left_index and self.right_index: left_on, right_on = (), () elif self.left_index: raise MergeError("Must pass right_on or right_index=True") elif self.right_index: raise MergeError("Must pass left_on or left_index=True") else: # use the common columns left_cols = self.left.columns right_cols = self.right.columns common_cols = left_cols.intersection(right_cols) if len(common_cols) == 0: raise MergeError( "No common columns to perform merge on. " f"Merge options: left_on={left_on}, " f"right_on={right_on}, " f"left_index={self.left_index}, " f"right_index={self.right_index}" ) if ( not left_cols.join(common_cols, how="inner").is_unique or not right_cols.join(common_cols, how="inner").is_unique ): raise MergeError(f"Data columns not unique: {common_cols!r}") left_on = right_on = common_cols elif self.on is not None: if left_on is not None or right_on is not None: raise MergeError( 'Can only pass argument "on" OR "left_on" ' 'and "right_on", not a combination of both.' ) if self.left_index or self.right_index: raise MergeError( 'Can only pass argument "on" OR "left_index" ' 'and "right_index", not a combination of both.' ) left_on = right_on = self.on elif left_on is not None: if self.left_index: raise MergeError( 'Can only pass argument "left_on" OR "left_index" not both.' ) if not self.right_index and right_on is None: raise MergeError('Must pass "right_on" OR "right_index".') n = len(left_on) if self.right_index: if len(left_on) != self.right.index.nlevels: raise ValueError( "len(left_on) must equal the number " 'of levels in the index of "right"' ) right_on = [None] * n elif right_on is not None: if self.right_index: raise MergeError( 'Can only pass argument "right_on" OR "right_index" not both.' ) if not self.left_index and left_on is None: raise MergeError('Must pass "left_on" OR "left_index".') n = len(right_on) if self.left_index: if len(right_on) != self.left.index.nlevels: raise ValueError( "len(right_on) must equal the number " 'of levels in the index of "left"' ) left_on = [None] * n if len(right_on) != len(left_on): raise ValueError("len(right_on) must equal len(left_on)") return left_on, right_on @final def _validate_validate_kwd(self, validate: str) -> None: # Check uniqueness of each if self.left_index: left_unique = self.orig_left.index.is_unique else: left_unique = MultiIndex.from_arrays(self.left_join_keys).is_unique if self.right_index: right_unique = self.orig_right.index.is_unique else: right_unique = MultiIndex.from_arrays(self.right_join_keys).is_unique # Check data integrity if validate in ["one_to_one", "1:1"]: if not left_unique and not right_unique: raise MergeError( "Merge keys are not unique in either left " "or right dataset; not a one-to-one merge" ) if not left_unique: raise MergeError( "Merge keys are not unique in left dataset; not a one-to-one merge" ) if not right_unique: raise MergeError( "Merge keys are not unique in right dataset; not a one-to-one merge" ) elif validate in ["one_to_many", "1:m"]: if not left_unique: raise MergeError( "Merge keys are not unique in left dataset; not a one-to-many merge" ) elif validate in ["many_to_one", "m:1"]: if not right_unique: raise MergeError( "Merge keys are not unique in right dataset; " "not a many-to-one merge" ) elif validate in ["many_to_many", "m:m"]: pass else: raise ValueError( f'"{validate}" is not a valid argument. ' "Valid arguments are:\n" '- "1:1"\n' '- "1:m"\n' '- "m:1"\n' '- "m:m"\n' '- "one_to_one"\n' '- "one_to_many"\n' '- "many_to_one"\n' '- "many_to_many"' ) def get_join_indexers( left_keys: list[ArrayLike], right_keys: list[ArrayLike], sort: bool = False, how: JoinHow = "inner", ) -> tuple[npt.NDArray[np.intp] | None, npt.NDArray[np.intp] | None]: """ Parameters ---------- left_keys : list[ndarray, ExtensionArray, Index, Series] right_keys : list[ndarray, ExtensionArray, Index, Series] sort : bool, default False how : {'inner', 'outer', 'left', 'right'}, default 'inner' Returns ------- np.ndarray[np.intp] or None Indexer into the left_keys. np.ndarray[np.intp] or None Indexer into the right_keys. """ assert len(left_keys) == len( right_keys ), "left_keys and right_keys must be the same length" # fast-path for empty left/right left_n = len(left_keys[0]) right_n = len(right_keys[0]) if left_n == 0: if how in ["left", "inner"]: return _get_empty_indexer() elif not sort and how in ["right", "outer"]: return _get_no_sort_one_missing_indexer(right_n, True) elif right_n == 0: if how in ["right", "inner"]: return _get_empty_indexer() elif not sort and how in ["left", "outer"]: return _get_no_sort_one_missing_indexer(left_n, False) lkey: ArrayLike rkey: ArrayLike if len(left_keys) > 1: # get left & right join labels and num. of levels at each location mapped = ( _factorize_keys(left_keys[n], right_keys[n], sort=sort) for n in range(len(left_keys)) ) zipped = zip(*mapped) llab, rlab, shape = (list(x) for x in zipped) # get flat i8 keys from label lists lkey, rkey = _get_join_keys(llab, rlab, tuple(shape), sort) else: lkey = left_keys[0] rkey = right_keys[0] left = Index(lkey) right = Index(rkey) if ( left.is_monotonic_increasing and right.is_monotonic_increasing and (left.is_unique or right.is_unique) ): _, lidx, ridx = left.join(right, how=how, return_indexers=True, sort=sort) else: lidx, ridx = get_join_indexers_non_unique( left._values, right._values, sort, how ) if lidx is not None and is_range_indexer(lidx, len(left)): lidx = None if ridx is not None and is_range_indexer(ridx, len(right)): ridx = None return lidx, ridx def get_join_indexers_non_unique( left: ArrayLike, right: ArrayLike, sort: bool = False, how: JoinHow = "inner", ) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: """ Get join indexers for left and right. Parameters ---------- left : ArrayLike right : ArrayLike sort : bool, default False how : {'inner', 'outer', 'left', 'right'}, default 'inner' Returns ------- np.ndarray[np.intp] Indexer into left. np.ndarray[np.intp] Indexer into right. """ lkey, rkey, count = _factorize_keys(left, right, sort=sort, how=how) if count == -1: # hash join return lkey, rkey if how == "left": lidx, ridx = libjoin.left_outer_join(lkey, rkey, count, sort=sort) elif how == "right": ridx, lidx = libjoin.left_outer_join(rkey, lkey, count, sort=sort) elif how == "inner": lidx, ridx = libjoin.inner_join(lkey, rkey, count, sort=sort) elif how == "outer": lidx, ridx = libjoin.full_outer_join(lkey, rkey, count) return lidx, ridx def restore_dropped_levels_multijoin( left: MultiIndex, right: MultiIndex, dropped_level_names, join_index: Index, lindexer: npt.NDArray[np.intp], rindexer: npt.NDArray[np.intp], ) -> tuple[FrozenList, FrozenList, FrozenList]: """ *this is an internal non-public method* Returns the levels, labels and names of a multi-index to multi-index join. Depending on the type of join, this method restores the appropriate dropped levels of the joined multi-index. The method relies on lindexer, rindexer which hold the index positions of left and right, where a join was feasible Parameters ---------- left : MultiIndex left index right : MultiIndex right index dropped_level_names : str array list of non-common level names join_index : Index the index of the join between the common levels of left and right lindexer : np.ndarray[np.intp] left indexer rindexer : np.ndarray[np.intp] right indexer Returns ------- levels : list of Index levels of combined multiindexes labels : np.ndarray[np.intp] labels of combined multiindexes names : List[Hashable] names of combined multiindex levels """ def _convert_to_multiindex(index: Index) -> MultiIndex: if isinstance(index, MultiIndex): return index else: return MultiIndex.from_arrays([index._values], names=[index.name]) # For multi-multi joins with one overlapping level, # the returned index if of type Index # Assure that join_index is of type MultiIndex # so that dropped levels can be appended join_index = _convert_to_multiindex(join_index) join_levels = join_index.levels join_codes = join_index.codes join_names = join_index.names # Iterate through the levels that must be restored for dropped_level_name in dropped_level_names: if dropped_level_name in left.names: idx = left indexer = lindexer else: idx = right indexer = rindexer # The index of the level name to be restored name_idx = idx.names.index(dropped_level_name) restore_levels = idx.levels[name_idx] # Inject -1 in the codes list where a join was not possible # IOW indexer[i]=-1 codes = idx.codes[name_idx] if indexer is None: restore_codes = codes else: restore_codes = algos.take_nd(codes, indexer, fill_value=-1) # error: Cannot determine type of "__add__" join_levels = join_levels + [restore_levels] # type: ignore[has-type] join_codes = join_codes + [restore_codes] # type: ignore[has-type] join_names = join_names + [dropped_level_name] return join_levels, join_codes, join_names class _OrderedMerge(_MergeOperation): _merge_type = "ordered_merge" def __init__( self, left: DataFrame | Series, right: DataFrame | Series, on: IndexLabel | None = None, left_on: IndexLabel | None = None, right_on: IndexLabel | None = None, left_index: bool = False, right_index: bool = False, suffixes: Suffixes = ("_x", "_y"), fill_method: str | None = None, how: JoinHow | Literal["asof"] = "outer", ) -> None: self.fill_method = fill_method _MergeOperation.__init__( self, left, right, on=on, left_on=left_on, left_index=left_index, right_index=right_index, right_on=right_on, how=how, suffixes=suffixes, sort=True, # factorize sorts ) def get_result(self) -> DataFrame: join_index, left_indexer, right_indexer = self._get_join_info() left_join_indexer: npt.NDArray[np.intp] | None right_join_indexer: npt.NDArray[np.intp] | None if self.fill_method == "ffill": if left_indexer is None: left_join_indexer = None else: left_join_indexer = libjoin.ffill_indexer(left_indexer) if right_indexer is None: right_join_indexer = None else: right_join_indexer = libjoin.ffill_indexer(right_indexer) elif self.fill_method is None: left_join_indexer = left_indexer right_join_indexer = right_indexer else: raise ValueError("fill_method must be 'ffill' or None") result = self._reindex_and_concat( join_index, left_join_indexer, right_join_indexer ) self._maybe_add_join_keys(result, left_indexer, right_indexer) return result def _asof_by_function(direction: str): name = f"asof_join_{direction}_on_X_by_Y" return getattr(libjoin, name, None) class _AsOfMerge(_OrderedMerge): _merge_type = "asof_merge" def __init__( self, left: DataFrame | Series, right: DataFrame | Series, on: IndexLabel | None = None, left_on: IndexLabel | None = None, right_on: IndexLabel | None = None, left_index: bool = False, right_index: bool = False, by=None, left_by=None, right_by=None, suffixes: Suffixes = ("_x", "_y"), how: Literal["asof"] = "asof", tolerance=None, allow_exact_matches: bool = True, direction: str = "backward", ) -> None: self.by = by self.left_by = left_by self.right_by = right_by self.tolerance = tolerance self.allow_exact_matches = allow_exact_matches self.direction = direction # check 'direction' is valid if self.direction not in ["backward", "forward", "nearest"]: raise MergeError(f"direction invalid: {self.direction}") # validate allow_exact_matches if not is_bool(self.allow_exact_matches): msg = ( "allow_exact_matches must be boolean, " f"passed {self.allow_exact_matches}" ) raise MergeError(msg) _OrderedMerge.__init__( self, left, right, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, how=how, suffixes=suffixes, fill_method=None, ) def _validate_left_right_on(self, left_on, right_on): left_on, right_on = super()._validate_left_right_on(left_on, right_on) # we only allow on to be a single item for on if len(left_on) != 1 and not self.left_index: raise MergeError("can only asof on a key for left") if len(right_on) != 1 and not self.right_index: raise MergeError("can only asof on a key for right") if self.left_index and isinstance(self.left.index, MultiIndex): raise MergeError("left can only have one index") if self.right_index and isinstance(self.right.index, MultiIndex): raise MergeError("right can only have one index") # set 'by' columns if self.by is not None: if self.left_by is not None or self.right_by is not None: raise MergeError("Can only pass by OR left_by and right_by") self.left_by = self.right_by = self.by if self.left_by is None and self.right_by is not None: raise MergeError("missing left_by") if self.left_by is not None and self.right_by is None: raise MergeError("missing right_by") # GH#29130 Check that merge keys do not have dtype object if not self.left_index: left_on_0 = left_on[0] if isinstance(left_on_0, _known): lo_dtype = left_on_0.dtype else: lo_dtype = ( self.left._get_label_or_level_values(left_on_0).dtype if left_on_0 in self.left.columns else self.left.index.get_level_values(left_on_0) ) else: lo_dtype = self.left.index.dtype if not self.right_index: right_on_0 = right_on[0] if isinstance(right_on_0, _known): ro_dtype = right_on_0.dtype else: ro_dtype = ( self.right._get_label_or_level_values(right_on_0).dtype if right_on_0 in self.right.columns else self.right.index.get_level_values(right_on_0) ) else: ro_dtype = self.right.index.dtype if ( is_object_dtype(lo_dtype) or is_object_dtype(ro_dtype) or is_string_dtype(lo_dtype) or is_string_dtype(ro_dtype) ): raise MergeError( f"Incompatible merge dtype, {lo_dtype!r} and " f"{ro_dtype!r}, both sides must have numeric dtype" ) # add 'by' to our key-list so we can have it in the # output as a key if self.left_by is not None: if not is_list_like(self.left_by): self.left_by = [self.left_by] if not is_list_like(self.right_by): self.right_by = [self.right_by] if len(self.left_by) != len(self.right_by): raise MergeError("left_by and right_by must be the same length") left_on = self.left_by + list(left_on) right_on = self.right_by + list(right_on) return left_on, right_on def _maybe_require_matching_dtypes( self, left_join_keys: list[ArrayLike], right_join_keys: list[ArrayLike] ) -> None: # TODO: why do we do this for AsOfMerge but not the others? def _check_dtype_match(left: ArrayLike, right: ArrayLike, i: int) -> None: if left.dtype != right.dtype: if isinstance(left.dtype, CategoricalDtype) and isinstance( right.dtype, CategoricalDtype ): # The generic error message is confusing for categoricals. # # In this function, the join keys include both the original # ones of the merge_asof() call, and also the keys passed # to its by= argument. Unordered but equal categories # are not supported for the former, but will fail # later with a ValueError, so we don't *need* to check # for them here. msg = ( f"incompatible merge keys [{i}] {left.dtype!r} and " f"{right.dtype!r}, both sides category, but not equal ones" ) else: msg = ( f"incompatible merge keys [{i}] {left.dtype!r} and " f"{right.dtype!r}, must be the same type" ) raise MergeError(msg) # validate index types are the same for i, (lk, rk) in enumerate(zip(left_join_keys, right_join_keys)): _check_dtype_match(lk, rk, i) if self.left_index: lt = self.left.index._values else: lt = left_join_keys[-1] if self.right_index: rt = self.right.index._values else: rt = right_join_keys[-1] _check_dtype_match(lt, rt, 0) def _validate_tolerance(self, left_join_keys: list[ArrayLike]) -> None: # validate tolerance; datetime.timedelta or Timedelta if we have a DTI if self.tolerance is not None: if self.left_index: lt = self.left.index._values else: lt = left_join_keys[-1] msg = ( f"incompatible tolerance {self.tolerance}, must be compat " f"with type {lt.dtype!r}" ) if needs_i8_conversion(lt.dtype) or ( isinstance(lt, ArrowExtensionArray) and lt.dtype.kind in "mM" ): if not isinstance(self.tolerance, datetime.timedelta): raise MergeError(msg) if self.tolerance < Timedelta(0): raise MergeError("tolerance must be positive") elif is_integer_dtype(lt.dtype): if not is_integer(self.tolerance): raise MergeError(msg) if self.tolerance < 0: raise MergeError("tolerance must be positive") elif is_float_dtype(lt.dtype): if not is_number(self.tolerance): raise MergeError(msg) # error: Unsupported operand types for > ("int" and "Number") if self.tolerance < 0: # type: ignore[operator] raise MergeError("tolerance must be positive") else: raise MergeError("key must be integer, timestamp or float") def _convert_values_for_libjoin( self, values: AnyArrayLike, side: str ) -> np.ndarray: # we require sortedness and non-null values in the join keys if not Index(values).is_monotonic_increasing: if isna(values).any(): raise ValueError(f"Merge keys contain null values on {side} side") raise ValueError(f"{side} keys must be sorted") if isinstance(values, ArrowExtensionArray): values = values._maybe_convert_datelike_array() if needs_i8_conversion(values.dtype): values = values.view("i8") elif isinstance(values, BaseMaskedArray): # we've verified above that no nulls exist values = values._data elif isinstance(values, ExtensionArray): values = values.to_numpy() # error: Incompatible return value type (got "Union[ExtensionArray, # Any, ndarray[Any, Any], ndarray[Any, dtype[Any]], Index, Series]", # expected "ndarray[Any, Any]") return values # type: ignore[return-value] def _get_join_indexers(self) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: """return the join indexers""" # values to compare left_values = ( self.left.index._values if self.left_index else self.left_join_keys[-1] ) right_values = ( self.right.index._values if self.right_index else self.right_join_keys[-1] ) # _maybe_require_matching_dtypes already checked for dtype matching assert left_values.dtype == right_values.dtype tolerance = self.tolerance if tolerance is not None: # TODO: can we reuse a tolerance-conversion function from # e.g. TimedeltaIndex? if needs_i8_conversion(left_values.dtype) or ( isinstance(left_values, ArrowExtensionArray) and left_values.dtype.kind in "mM" ): tolerance = Timedelta(tolerance) # TODO: we have no test cases with PeriodDtype here; probably # need to adjust tolerance for that case. if left_values.dtype.kind in "mM": # Make sure the i8 representation for tolerance # matches that for left_values/right_values. if isinstance(left_values, ArrowExtensionArray): unit = left_values.dtype.pyarrow_dtype.unit else: unit = ensure_wrapped_if_datetimelike(left_values).unit tolerance = tolerance.as_unit(unit) tolerance = tolerance._value # initial type conversion as needed left_values = self._convert_values_for_libjoin(left_values, "left") right_values = self._convert_values_for_libjoin(right_values, "right") # a "by" parameter requires special handling if self.left_by is not None: # remove 'on' parameter from values if one existed if self.left_index and self.right_index: left_join_keys = self.left_join_keys right_join_keys = self.right_join_keys else: left_join_keys = self.left_join_keys[0:-1] right_join_keys = self.right_join_keys[0:-1] mapped = [ _factorize_keys( left_join_keys[n], right_join_keys[n], sort=False, ) for n in range(len(left_join_keys)) ] if len(left_join_keys) == 1: left_by_values = mapped[0][0] right_by_values = mapped[0][1] else: arrs = [np.concatenate(m[:2]) for m in mapped] shape = tuple(m[2] for m in mapped) group_index = get_group_index( arrs, shape=shape, sort=False, xnull=False ) left_len = len(left_join_keys[0]) left_by_values = group_index[:left_len] right_by_values = group_index[left_len:] left_by_values = ensure_int64(left_by_values) right_by_values = ensure_int64(right_by_values) # choose appropriate function by type func = _asof_by_function(self.direction) return func( left_values, right_values, left_by_values, right_by_values, self.allow_exact_matches, tolerance, ) else: # choose appropriate function by type func = _asof_by_function(self.direction) return func( left_values, right_values, None, None, self.allow_exact_matches, tolerance, False, ) def _get_multiindex_indexer( join_keys: list[ArrayLike], index: MultiIndex, sort: bool ) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: # left & right join labels and num. of levels at each location mapped = ( _factorize_keys(index.levels[n]._values, join_keys[n], sort=sort) for n in range(index.nlevels) ) zipped = zip(*mapped) rcodes, lcodes, shape = (list(x) for x in zipped) if sort: rcodes = list(map(np.take, rcodes, index.codes)) else: i8copy = lambda a: a.astype("i8", subok=False) rcodes = list(map(i8copy, index.codes)) # fix right labels if there were any nulls for i, join_key in enumerate(join_keys): mask = index.codes[i] == -1 if mask.any(): # check if there already was any nulls at this location # if there was, it is factorized to `shape[i] - 1` a = join_key[lcodes[i] == shape[i] - 1] if a.size == 0 or not a[0] != a[0]: shape[i] += 1 rcodes[i][mask] = shape[i] - 1 # get flat i8 join keys lkey, rkey = _get_join_keys(lcodes, rcodes, tuple(shape), sort) return lkey, rkey def _get_empty_indexer() -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: """Return empty join indexers.""" return ( np.array([], dtype=np.intp), np.array([], dtype=np.intp), ) def _get_no_sort_one_missing_indexer( n: int, left_missing: bool ) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: """ Return join indexers where all of one side is selected without sorting and none of the other side is selected. Parameters ---------- n : int Length of indexers to create. left_missing : bool If True, the left indexer will contain only -1's. If False, the right indexer will contain only -1's. Returns ------- np.ndarray[np.intp] Left indexer np.ndarray[np.intp] Right indexer """ idx = np.arange(n, dtype=np.intp) idx_missing = np.full(shape=n, fill_value=-1, dtype=np.intp) if left_missing: return idx_missing, idx return idx, idx_missing def _left_join_on_index( left_ax: Index, right_ax: Index, join_keys: list[ArrayLike], sort: bool = False ) -> tuple[Index, npt.NDArray[np.intp] | None, npt.NDArray[np.intp]]: if isinstance(right_ax, MultiIndex): lkey, rkey = _get_multiindex_indexer(join_keys, right_ax, sort=sort) else: # error: Incompatible types in assignment (expression has type # "Union[Union[ExtensionArray, ndarray[Any, Any]], Index, Series]", # variable has type "ndarray[Any, dtype[signedinteger[Any]]]") lkey = join_keys[0] # type: ignore[assignment] # error: Incompatible types in assignment (expression has type "Index", # variable has type "ndarray[Any, dtype[signedinteger[Any]]]") rkey = right_ax._values # type: ignore[assignment] left_key, right_key, count = _factorize_keys(lkey, rkey, sort=sort) left_indexer, right_indexer = libjoin.left_outer_join( left_key, right_key, count, sort=sort ) if sort or len(left_ax) != len(left_indexer): # if asked to sort or there are 1-to-many matches join_index = left_ax.take(left_indexer) return join_index, left_indexer, right_indexer # left frame preserves order & length of its index return left_ax, None, right_indexer def _factorize_keys( lk: ArrayLike, rk: ArrayLike, sort: bool = True, how: str | None = None, ) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp], int]: """ Encode left and right keys as enumerated types. This is used to get the join indexers to be used when merging DataFrames. Parameters ---------- lk : ndarray, ExtensionArray Left key. rk : ndarray, ExtensionArray Right key. sort : bool, defaults to True If True, the encoding is done such that the unique elements in the keys are sorted. how: str, optional Used to determine if we can use hash-join. If not given, then just factorize keys. Returns ------- np.ndarray[np.intp] Left (resp. right if called with `key='right'`) labels, as enumerated type. np.ndarray[np.intp] Right (resp. left if called with `key='right'`) labels, as enumerated type. int Number of unique elements in union of left and right labels. -1 if we used a hash-join. See Also -------- merge : Merge DataFrame or named Series objects with a database-style join. algorithms.factorize : Encode the object as an enumerated type or categorical variable. Examples -------- >>> lk = np.array(["a", "c", "b"]) >>> rk = np.array(["a", "c"]) Here, the unique values are `'a', 'b', 'c'`. With the default `sort=True`, the encoding will be `{0: 'a', 1: 'b', 2: 'c'}`: >>> pd.core.reshape.merge._factorize_keys(lk, rk) (array([0, 2, 1]), array([0, 2]), 3) With the `sort=False`, the encoding will correspond to the order in which the unique elements first appear: `{0: 'a', 1: 'c', 2: 'b'}`: >>> pd.core.reshape.merge._factorize_keys(lk, rk, sort=False) (array([0, 1, 2]), array([0, 1]), 3) """ # TODO: if either is a RangeIndex, we can likely factorize more efficiently? if ( isinstance(lk.dtype, DatetimeTZDtype) and isinstance(rk.dtype, DatetimeTZDtype) ) or (lib.is_np_dtype(lk.dtype, "M") and lib.is_np_dtype(rk.dtype, "M")): # Extract the ndarray (UTC-localized) values # Note: we dont need the dtypes to match, as these can still be compared lk, rk = cast("DatetimeArray", lk)._ensure_matching_resos(rk) lk = cast("DatetimeArray", lk)._ndarray rk = cast("DatetimeArray", rk)._ndarray elif ( isinstance(lk.dtype, CategoricalDtype) and isinstance(rk.dtype, CategoricalDtype) and lk.dtype == rk.dtype ): assert isinstance(lk, Categorical) assert isinstance(rk, Categorical) # Cast rk to encoding so we can compare codes with lk rk = lk._encode_with_my_categories(rk) lk = ensure_int64(lk.codes) rk = ensure_int64(rk.codes) elif isinstance(lk, ExtensionArray) and lk.dtype == rk.dtype: if (isinstance(lk.dtype, ArrowDtype) and is_string_dtype(lk.dtype)) or ( isinstance(lk.dtype, StringDtype) and lk.dtype.storage == "pyarrow" ): import pyarrow as pa import pyarrow.compute as pc len_lk = len(lk) lk = lk._pa_array # type: ignore[attr-defined] rk = rk._pa_array # type: ignore[union-attr] dc = ( pa.chunked_array(lk.chunks + rk.chunks) # type: ignore[union-attr] .combine_chunks() .dictionary_encode() ) llab, rlab, count = ( pc.fill_null(dc.indices[slice(len_lk)], -1) .to_numpy() .astype(np.intp, copy=False), pc.fill_null(dc.indices[slice(len_lk, None)], -1) .to_numpy() .astype(np.intp, copy=False), len(dc.dictionary), ) if sort: uniques = dc.dictionary.to_numpy(zero_copy_only=False) llab, rlab = _sort_labels(uniques, llab, rlab) if dc.null_count > 0: lmask = llab == -1 lany = lmask.any() rmask = rlab == -1 rany = rmask.any() if lany: np.putmask(llab, lmask, count) if rany: np.putmask(rlab, rmask, count) count += 1 return llab, rlab, count if not isinstance(lk, BaseMaskedArray) and not ( # exclude arrow dtypes that would get cast to object isinstance(lk.dtype, ArrowDtype) and ( is_numeric_dtype(lk.dtype.numpy_dtype) or is_string_dtype(lk.dtype) and not sort ) ): lk, _ = lk._values_for_factorize() # error: Item "ndarray" of "Union[Any, ndarray]" has no attribute # "_values_for_factorize" rk, _ = rk._values_for_factorize() # type: ignore[union-attr] if needs_i8_conversion(lk.dtype) and lk.dtype == rk.dtype: # GH#23917 TODO: Needs tests for non-matching dtypes # GH#23917 TODO: needs tests for case where lk is integer-dtype # and rk is datetime-dtype lk = np.asarray(lk, dtype=np.int64) rk = np.asarray(rk, dtype=np.int64) klass, lk, rk = _convert_arrays_and_get_rizer_klass(lk, rk) rizer = klass( max(len(lk), len(rk)), uses_mask=isinstance(rk, (BaseMaskedArray, ArrowExtensionArray)), ) if isinstance(lk, BaseMaskedArray): assert isinstance(rk, BaseMaskedArray) lk_data, lk_mask = lk._data, lk._mask rk_data, rk_mask = rk._data, rk._mask elif isinstance(lk, ArrowExtensionArray): assert isinstance(rk, ArrowExtensionArray) # we can only get here with numeric dtypes # TODO: Remove when we have a Factorizer for Arrow lk_data = lk.to_numpy(na_value=1, dtype=lk.dtype.numpy_dtype) rk_data = rk.to_numpy(na_value=1, dtype=lk.dtype.numpy_dtype) lk_mask, rk_mask = lk.isna(), rk.isna() else: # Argument 1 to "factorize" of "ObjectFactorizer" has incompatible type # "Union[ndarray[Any, dtype[signedinteger[_64Bit]]], # ndarray[Any, dtype[object_]]]"; expected "ndarray[Any, dtype[object_]]" lk_data, rk_data = lk, rk # type: ignore[assignment] lk_mask, rk_mask = None, None hash_join_available = how == "inner" and not sort and lk.dtype.kind in "iufb" if hash_join_available: rlab = rizer.factorize(rk_data, mask=rk_mask) if rizer.get_count() == len(rlab): ridx, lidx = rizer.hash_inner_join(lk_data, lk_mask) return lidx, ridx, -1 else: llab = rizer.factorize(lk_data, mask=lk_mask) else: llab = rizer.factorize(lk_data, mask=lk_mask) rlab = rizer.factorize(rk_data, mask=rk_mask) assert llab.dtype == np.dtype(np.intp), llab.dtype assert rlab.dtype == np.dtype(np.intp), rlab.dtype count = rizer.get_count() if sort: uniques = rizer.uniques.to_array() llab, rlab = _sort_labels(uniques, llab, rlab) # NA group lmask = llab == -1 lany = lmask.any() rmask = rlab == -1 rany = rmask.any() if lany or rany: if lany: np.putmask(llab, lmask, count) if rany: np.putmask(rlab, rmask, count) count += 1 return llab, rlab, count def _convert_arrays_and_get_rizer_klass( lk: ArrayLike, rk: ArrayLike ) -> tuple[type[libhashtable.Factorizer], ArrayLike, ArrayLike]: klass: type[libhashtable.Factorizer] if is_numeric_dtype(lk.dtype): if lk.dtype != rk.dtype: dtype = find_common_type([lk.dtype, rk.dtype]) if isinstance(dtype, ExtensionDtype): cls = dtype.construct_array_type() if not isinstance(lk, ExtensionArray): lk = cls._from_sequence(lk, dtype=dtype, copy=False) else: lk = lk.astype(dtype, copy=False) if not isinstance(rk, ExtensionArray): rk = cls._from_sequence(rk, dtype=dtype, copy=False) else: rk = rk.astype(dtype, copy=False) else: lk = lk.astype(dtype, copy=False) rk = rk.astype(dtype, copy=False) if isinstance(lk, BaseMaskedArray): # Invalid index type "type" for "Dict[Type[object], Type[Factorizer]]"; # expected type "Type[object]" klass = _factorizers[lk.dtype.type] # type: ignore[index] elif isinstance(lk.dtype, ArrowDtype): klass = _factorizers[lk.dtype.numpy_dtype.type] else: klass = _factorizers[lk.dtype.type] else: klass = libhashtable.ObjectFactorizer lk = ensure_object(lk) rk = ensure_object(rk) return klass, lk, rk def _sort_labels( uniques: np.ndarray, left: npt.NDArray[np.intp], right: npt.NDArray[np.intp] ) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: llength = len(left) labels = np.concatenate([left, right]) _, new_labels = algos.safe_sort(uniques, labels, use_na_sentinel=True) new_left, new_right = new_labels[:llength], new_labels[llength:] return new_left, new_right def _get_join_keys( llab: list[npt.NDArray[np.int64 | np.intp]], rlab: list[npt.NDArray[np.int64 | np.intp]], shape: Shape, sort: bool, ) -> tuple[npt.NDArray[np.int64], npt.NDArray[np.int64]]: # how many levels can be done without overflow nlev = next( lev for lev in range(len(shape), 0, -1) if not is_int64_overflow_possible(shape[:lev]) ) # get keys for the first `nlev` levels stride = np.prod(shape[1:nlev], dtype="i8") lkey = stride * llab[0].astype("i8", subok=False, copy=False) rkey = stride * rlab[0].astype("i8", subok=False, copy=False) for i in range(1, nlev): with np.errstate(divide="ignore"): stride //= shape[i] lkey += llab[i] * stride rkey += rlab[i] * stride if nlev == len(shape): # all done! return lkey, rkey # densify current keys to avoid overflow lkey, rkey, count = _factorize_keys(lkey, rkey, sort=sort) llab = [lkey] + llab[nlev:] rlab = [rkey] + rlab[nlev:] shape = (count,) + shape[nlev:] return _get_join_keys(llab, rlab, shape, sort) def _should_fill(lname, rname) -> bool: if not isinstance(lname, str) or not isinstance(rname, str): return True return lname == rname def _any(x) -> bool: return x is not None and com.any_not_none(*x) def _validate_operand(obj: DataFrame | Series) -> DataFrame: if isinstance(obj, ABCDataFrame): return obj elif isinstance(obj, ABCSeries): if obj.name is None: raise ValueError("Cannot merge a Series without a name") return obj.to_frame() else: raise TypeError( f"Can only merge Series or DataFrame objects, a {type(obj)} was passed" ) def _items_overlap_with_suffix( left: Index, right: Index, suffixes: Suffixes ) -> tuple[Index, Index]: """ Suffixes type validation. If two indices overlap, add suffixes to overlapping entries. If corresponding suffix is empty, the entry is simply converted to string. """ if not is_list_like(suffixes, allow_sets=False) or isinstance(suffixes, dict): raise TypeError( f"Passing 'suffixes' as a {type(suffixes)}, is not supported. " "Provide 'suffixes' as a tuple instead." ) to_rename = left.intersection(right) if len(to_rename) == 0: return left, right lsuffix, rsuffix = suffixes if not lsuffix and not rsuffix: raise ValueError(f"columns overlap but no suffix specified: {to_rename}") def renamer(x, suffix: str | None): """ Rename the left and right indices. If there is overlap, and suffix is not None, add suffix, otherwise, leave it as-is. Parameters ---------- x : original column name suffix : str or None Returns ------- x : renamed column name """ if x in to_rename and suffix is not None: return f"{x}{suffix}" return x lrenamer = partial(renamer, suffix=lsuffix) rrenamer = partial(renamer, suffix=rsuffix) llabels = left._transform_index(lrenamer) rlabels = right._transform_index(rrenamer) dups = [] if not llabels.is_unique: # Only warn when duplicates are caused because of suffixes, already duplicated # columns in origin should not warn dups = llabels[(llabels.duplicated()) & (~left.duplicated())].tolist() if not rlabels.is_unique: dups.extend(rlabels[(rlabels.duplicated()) & (~right.duplicated())].tolist()) if dups: raise MergeError( f"Passing 'suffixes' which cause duplicate columns {set(dups)} is " f"not allowed.", ) return llabels, rlabels