pandas.errors 源代码

"""
Expose public exceptions & warnings
"""

from __future__ import annotations

import ctypes

from pandas._config.config import OptionError

from pandas._libs.tslibs import (
    OutOfBoundsDatetime,
    OutOfBoundsTimedelta,
)

from pandas.util.version import InvalidVersion


[文档] class IntCastingNaNError(ValueError): """ Exception raised when converting (``astype``) an array with NaN to an integer type. Examples -------- >>> pd.DataFrame(np.array([[1, np.nan], [2, 3]]), dtype="i8") Traceback (most recent call last): IntCastingNaNError: Cannot convert non-finite values (NA or inf) to integer """
[文档] class NullFrequencyError(ValueError): """ Exception raised when a ``freq`` cannot be null. Particularly ``DatetimeIndex.shift``, ``TimedeltaIndex.shift``, ``PeriodIndex.shift``. Examples -------- >>> df = pd.DatetimeIndex(["2011-01-01 10:00", "2011-01-01"], freq=None) >>> df.shift(2) Traceback (most recent call last): NullFrequencyError: Cannot shift with no freq """
[文档] class PerformanceWarning(Warning): """ Warning raised when there is a possible performance impact. Examples -------- >>> df = pd.DataFrame( ... {"jim": [0, 0, 1, 1], "joe": ["x", "x", "z", "y"], "jolie": [1, 2, 3, 4]} ... ) >>> df = df.set_index(["jim", "joe"]) >>> df jolie jim joe 0 x 1 x 2 1 z 3 y 4 >>> df.loc[(1, "z")] # doctest: +SKIP # PerformanceWarning: indexing past lexsort depth may impact performance. df.loc[(1, 'z')] jolie jim joe 1 z 3 """
[文档] class UnsupportedFunctionCall(ValueError): """ Exception raised when attempting to call a unsupported numpy function. For example, ``np.cumsum(groupby_object)``. Examples -------- >>> df = pd.DataFrame( ... {"A": [0, 0, 1, 1], "B": ["x", "x", "z", "y"], "C": [1, 2, 3, 4]} ... ) >>> np.cumsum(df.groupby(["A"])) Traceback (most recent call last): UnsupportedFunctionCall: numpy operations are not valid with groupby. Use .groupby(...).cumsum() instead """
[文档] class UnsortedIndexError(KeyError): """ Error raised when slicing a MultiIndex which has not been lexsorted. Subclass of `KeyError`. Examples -------- >>> df = pd.DataFrame( ... { ... "cat": [0, 0, 1, 1], ... "color": ["white", "white", "brown", "black"], ... "lives": [4, 4, 3, 7], ... }, ... ) >>> df = df.set_index(["cat", "color"]) >>> df lives cat color 0 white 4 white 4 1 brown 3 black 7 >>> df.loc[(0, "black") : (1, "white")] Traceback (most recent call last): UnsortedIndexError: 'Key length (2) was greater than MultiIndex lexsort depth (1)' """
[文档] class ParserError(ValueError): """ Exception that is raised by an error encountered in parsing file contents. This is a generic error raised for errors encountered when functions like `read_csv` or `read_html` are parsing contents of a file. See Also -------- read_csv : Read CSV (comma-separated) file into a DataFrame. read_html : Read HTML table into a DataFrame. Examples -------- >>> data = '''a,b,c ... cat,foo,bar ... dog,foo,"baz''' >>> from io import StringIO >>> pd.read_csv(StringIO(data), skipfooter=1, engine="python") Traceback (most recent call last): ParserError: ',' expected after '"'. Error could possibly be due to parsing errors in the skipped footer rows """
[文档] class DtypeWarning(Warning): """ Warning raised when reading different dtypes in a column from a file. Raised for a dtype incompatibility. This can happen whenever `read_csv` or `read_table` encounter non-uniform dtypes in a column(s) of a given CSV file. See Also -------- read_csv : Read CSV (comma-separated) file into a DataFrame. read_table : Read general delimited file into a DataFrame. Notes ----- This warning is issued when dealing with larger files because the dtype checking happens per chunk read. Despite the warning, the CSV file is read with mixed types in a single column which will be an object type. See the examples below to better understand this issue. Examples -------- This example creates and reads a large CSV file with a column that contains `int` and `str`. >>> df = pd.DataFrame( ... { ... "a": (["1"] * 100000 + ["X"] * 100000 + ["1"] * 100000), ... "b": ["b"] * 300000, ... } ... ) # doctest: +SKIP >>> df.to_csv("test.csv", index=False) # doctest: +SKIP >>> df2 = pd.read_csv("test.csv") # doctest: +SKIP ... # DtypeWarning: Columns (0: a) have mixed types Important to notice that ``df2`` will contain both `str` and `int` for the same input, '1'. >>> df2.iloc[262140, 0] # doctest: +SKIP '1' >>> type(df2.iloc[262140, 0]) # doctest: +SKIP <class 'str'> >>> df2.iloc[262150, 0] # doctest: +SKIP 1 >>> type(df2.iloc[262150, 0]) # doctest: +SKIP <class 'int'> One way to solve this issue is using the `dtype` parameter in the `read_csv` and `read_table` functions to explicit the conversion: >>> df2 = pd.read_csv("test.csv", sep=",", dtype={"a": str}) # doctest: +SKIP No warning was issued. """
[文档] class EmptyDataError(ValueError): """ Exception raised in ``pd.read_csv`` when empty data or header is encountered. Examples -------- >>> from io import StringIO >>> empty = StringIO() >>> pd.read_csv(empty) Traceback (most recent call last): EmptyDataError: No columns to parse from file """
[文档] class ParserWarning(Warning): """ Warning raised when reading a file that doesn't use the default 'c' parser. Raised by `pd.read_csv` and `pd.read_table` when it is necessary to change parsers, generally from the default 'c' parser to 'python'. It happens due to a lack of support or functionality for parsing a particular attribute of a CSV file with the requested engine. Currently, 'c' unsupported options include the following parameters: 1. `sep` other than a single character (e.g. regex separators) 2. `skipfooter` higher than 0 The warning can be avoided by adding `engine='python'` as a parameter in `pd.read_csv` and `pd.read_table` methods. See Also -------- pd.read_csv : Read CSV (comma-separated) file into DataFrame. pd.read_table : Read general delimited file into DataFrame. Examples -------- Using a `sep` in `pd.read_csv` other than a single character: >>> import io >>> csv = '''a;b;c ... 1;1,8 ... 1;2,1''' >>> df = pd.read_csv(io.StringIO(csv), sep="[;,]") # doctest: +SKIP ... # ParserWarning: Falling back to the 'python' engine... Adding `engine='python'` to `pd.read_csv` removes the Warning: >>> df = pd.read_csv(io.StringIO(csv), sep="[;,]", engine="python") """
[文档] class MergeError(ValueError): """ Exception raised when merging data. Subclass of ``ValueError``. Examples -------- >>> left = pd.DataFrame( ... {"a": ["a", "b", "b", "d"], "b": ["cat", "dog", "weasel", "horse"]}, ... index=range(4), ... ) >>> right = pd.DataFrame( ... {"a": ["a", "b", "c", "d"], "c": ["meow", "bark", "chirp", "nay"]}, ... index=range(4), ... ).set_index("a") >>> left.join( ... right, ... on="a", ... validate="one_to_one", ... ) Traceback (most recent call last): MergeError: Merge keys are not unique in left dataset; not a one-to-one merge """
[文档] class AbstractMethodError(NotImplementedError): """ Raise this error instead of NotImplementedError for abstract methods. Examples -------- >>> class Foo: ... @classmethod ... def classmethod(cls): ... raise pd.errors.AbstractMethodError(cls, methodtype="classmethod") ... ... def method(self): ... raise pd.errors.AbstractMethodError(self) >>> test = Foo.classmethod() Traceback (most recent call last): AbstractMethodError: This classmethod must be defined in the concrete class Foo >>> test2 = Foo().method() Traceback (most recent call last): AbstractMethodError: This classmethod must be defined in the concrete class Foo """ def __init__(self, class_instance, methodtype: str = "method") -> None: types = {"method", "classmethod", "staticmethod", "property"} if methodtype not in types: raise ValueError( f"methodtype must be one of {methodtype}, got {types} instead." ) self.methodtype = methodtype self.class_instance = class_instance def __str__(self) -> str: if self.methodtype == "classmethod": name = self.class_instance.__name__ else: name = type(self.class_instance).__name__ return f"This {self.methodtype} must be defined in the concrete class {name}"
[文档] class NumbaUtilError(Exception): """ Error raised for unsupported Numba engine routines. Examples -------- >>> df = pd.DataFrame( ... {"key": ["a", "a", "b", "b"], "data": [1, 2, 3, 4]}, columns=["key", "data"] ... ) >>> def incorrect_function(x): ... return sum(x) * 2.7 >>> df.groupby("key").agg(incorrect_function, engine="numba") Traceback (most recent call last): NumbaUtilError: The first 2 arguments to incorrect_function must be ['values', 'index'] """
[文档] class DuplicateLabelError(ValueError): """ Error raised when an operation would introduce duplicate labels. Examples -------- >>> s = pd.Series([0, 1, 2], index=["a", "b", "c"]).set_flags( ... allows_duplicate_labels=False ... ) >>> s.reindex(["a", "a", "b"]) Traceback (most recent call last): ... DuplicateLabelError: Index has duplicates. positions label a [0, 1] """
[文档] class InvalidIndexError(Exception): """ Exception raised when attempting to use an invalid index key. Examples -------- >>> idx = pd.MultiIndex.from_product([["x", "y"], [0, 1]]) >>> df = pd.DataFrame([[1, 1, 2, 2], [3, 3, 4, 4]], columns=idx) >>> df x y 0 1 0 1 0 1 1 2 2 1 3 3 4 4 >>> df[:, 0] Traceback (most recent call last): InvalidIndexError: (slice(None, None, None), 0) """
[文档] class DataError(Exception): """ Exceptionn raised when performing an operation on non-numerical data. For example, calling ``ohlc`` on a non-numerical column or a function on a rolling window. Examples -------- >>> ser = pd.Series(["a", "b", "c"]) >>> ser.rolling(2).sum() Traceback (most recent call last): DataError: No numeric types to aggregate """
[文档] class SpecificationError(Exception): """ Exception raised by ``agg`` when the functions are ill-specified. The exception raised in two scenarios. The first way is calling ``agg`` on a Dataframe or Series using a nested renamer (dict-of-dict). The second way is calling ``agg`` on a Dataframe with duplicated functions names without assigning column name. Examples -------- >>> df = pd.DataFrame({"A": [1, 1, 1, 2, 2], "B": range(5), "C": range(5)}) >>> df.groupby("A").B.agg({"foo": "count"}) # doctest: +SKIP ... # SpecificationError: nested renamer is not supported >>> df.groupby("A").agg({"B": {"foo": ["sum", "max"]}}) # doctest: +SKIP ... # SpecificationError: nested renamer is not supported >>> df.groupby("A").agg(["min", "min"]) # doctest: +SKIP ... # SpecificationError: nested renamer is not supported """
[文档] class ChainedAssignmentError(Warning): """ Warning raised when trying to set using chained assignment. When the ``mode.copy_on_write`` option is enabled, chained assignment can never work. In such a situation, we are always setting into a temporary object that is the result of an indexing operation (getitem), which under Copy-on-Write always behaves as a copy. Thus, assigning through a chain can never update the original Series or DataFrame. For more information on Copy-on-Write, see :ref:`the user guide<copy_on_write>`. Examples -------- >>> pd.options.mode.copy_on_write = True >>> df = pd.DataFrame({"A": [1, 1, 1, 2, 2]}, columns=["A"]) >>> df["A"][0:3] = 10 # doctest: +SKIP ... # ChainedAssignmentError: ... >>> pd.options.mode.copy_on_write = False """
[文档] class NumExprClobberingError(NameError): """ Exception raised when trying to use a built-in numexpr name as a variable name. ``eval`` or ``query`` will throw the error if the engine is set to 'numexpr'. 'numexpr' is the default engine value for these methods if the numexpr package is installed. Examples -------- >>> df = pd.DataFrame({"abs": [1, 1, 1]}) >>> df.query("abs > 2") # doctest: +SKIP ... # NumExprClobberingError: Variables in expression "(abs) > (2)" overlap... >>> sin, a = 1, 2 >>> pd.eval("sin + a", engine="numexpr") # doctest: +SKIP ... # NumExprClobberingError: Variables in expression "(sin) + (a)" overlap... """
[文档] class UndefinedVariableError(NameError): """ Exception raised by ``query`` or ``eval`` when using an undefined variable name. It will also specify whether the undefined variable is local or not. Examples -------- >>> df = pd.DataFrame({"A": [1, 1, 1]}) >>> df.query("A > x") # doctest: +SKIP ... # UndefinedVariableError: name 'x' is not defined >>> df.query("A > @y") # doctest: +SKIP ... # UndefinedVariableError: local variable 'y' is not defined >>> pd.eval("x + 1") # doctest: +SKIP ... # UndefinedVariableError: name 'x' is not defined """ def __init__(self, name: str, is_local: bool | None = None) -> None: base_msg = f"{name!r} is not defined" if is_local: msg = f"local variable {base_msg}" else: msg = f"name {base_msg}" super().__init__(msg)
[文档] class IndexingError(Exception): """ Exception is raised when trying to index and there is a mismatch in dimensions. Raised by properties like :attr:`.pandas.DataFrame.iloc` when an indexer is out of bounds or :attr:`.pandas.DataFrame.loc` when its index is unalignable to the frame index. See Also -------- DataFrame.iloc : Purely integer-location based indexing for \ selection by position. DataFrame.loc : Access a group of rows and columns by label(s) \ or a boolean array. Examples -------- >>> df = pd.DataFrame({"A": [1, 1, 1]}) >>> df.loc[..., ..., "A"] # doctest: +SKIP ... # IndexingError: indexer may only contain one '...' entry >>> df = pd.DataFrame({"A": [1, 1, 1]}) >>> df.loc[1, ..., ...] # doctest: +SKIP ... # IndexingError: Too many indexers >>> df[pd.Series([True], dtype=bool)] # doctest: +SKIP ... # IndexingError: Unalignable boolean Series provided as indexer... >>> s = pd.Series(range(2), index=pd.MultiIndex.from_product([["a", "b"], ["c"]])) >>> s.loc["a", "c", "d"] # doctest: +SKIP ... # IndexingError: Too many indexers """
[文档] class PyperclipException(RuntimeError): """ Exception raised when clipboard functionality is unsupported. Raised by ``to_clipboard()`` and ``read_clipboard()``. """
[文档] class PyperclipWindowsException(PyperclipException): """ Exception raised when clipboard functionality is unsupported by Windows. Access to the clipboard handle would be denied due to some other window process is accessing it. """ def __init__(self, message: str) -> None: # attr only exists on Windows, so typing fails on other platforms message += f" ({ctypes.WinError()})" # type: ignore[attr-defined] super().__init__(message)
[文档] class CSSWarning(UserWarning): """ Warning is raised when converting css styling fails. This can be due to the styling not having an equivalent value or because the styling isn't properly formatted. Examples -------- >>> df = pd.DataFrame({"A": [1, 1, 1]}) >>> df.style.map(lambda x: "background-color: blueGreenRed;").to_excel( ... "styled.xlsx" ... ) # doctest: +SKIP CSSWarning: Unhandled color format: 'blueGreenRed' >>> df.style.map(lambda x: "border: 1px solid red red;").to_excel( ... "styled.xlsx" ... ) # doctest: +SKIP CSSWarning: Unhandled color format: 'blueGreenRed' """
[文档] class PossibleDataLossError(Exception): """ Exception raised when trying to open a HDFStore file when already opened. Examples -------- >>> store = pd.HDFStore("my-store", "a") # doctest: +SKIP >>> store.open("w") # doctest: +SKIP """
[文档] class ClosedFileError(Exception): """ Exception is raised when trying to perform an operation on a closed HDFStore file. Examples -------- >>> store = pd.HDFStore("my-store", "a") # doctest: +SKIP >>> store.close() # doctest: +SKIP >>> store.keys() # doctest: +SKIP ... # ClosedFileError: my-store file is not open! """
[文档] class IncompatibilityWarning(Warning): """ Warning raised when trying to use where criteria on an incompatible HDF5 file. """
[文档] class AttributeConflictWarning(Warning): """ Warning raised when index attributes conflict when using HDFStore. Occurs when attempting to append an index with a different name than the existing index on an HDFStore or attempting to append an index with a different frequency than the existing index on an HDFStore. Examples -------- >>> idx1 = pd.Index(["a", "b"], name="name1") >>> df1 = pd.DataFrame([[1, 2], [3, 4]], index=idx1) >>> df1.to_hdf("file", "data", "w", append=True) # doctest: +SKIP >>> idx2 = pd.Index(["c", "d"], name="name2") >>> df2 = pd.DataFrame([[5, 6], [7, 8]], index=idx2) >>> df2.to_hdf("file", "data", "a", append=True) # doctest: +SKIP AttributeConflictWarning: the [index_name] attribute of the existing index is [name1] which conflicts with the new [name2]... """
[文档] class DatabaseError(OSError): """ Error is raised when executing SQL with bad syntax or SQL that throws an error. Raised by :func:`.pandas.read_sql` when a bad SQL statement is passed in. See Also -------- read_sql : Read SQL query or database table into a DataFrame. Examples -------- >>> from sqlite3 import connect >>> conn = connect(":memory:") >>> pd.read_sql("select * test", conn) # doctest: +SKIP """
[文档] class PossiblePrecisionLoss(Warning): """ Warning raised by to_stata on a column with a value outside or equal to int64. When the column value is outside or equal to the int64 value the column is converted to a float64 dtype. Examples -------- >>> df = pd.DataFrame({"s": pd.Series([1, 2**53], dtype=np.int64)}) >>> df.to_stata("test") # doctest: +SKIP """
[文档] class ValueLabelTypeMismatch(Warning): """ Warning raised by to_stata on a category column that contains non-string values. Examples -------- >>> df = pd.DataFrame({"categories": pd.Series(["a", 2], dtype="category")}) >>> df.to_stata("test") # doctest: +SKIP """
[文档] class InvalidColumnName(Warning): """ Warning raised by to_stata the column contains a non-valid stata name. Because the column name is an invalid Stata variable, the name needs to be converted. See Also -------- DataFrame.to_stata : Export DataFrame object to Stata dta format. Examples -------- >>> df = pd.DataFrame({"0categories": pd.Series([2, 2])}) >>> df.to_stata("test") # doctest: +SKIP """
[文档] class CategoricalConversionWarning(Warning): """ Warning is raised when reading a partial labeled Stata file using a iterator. Examples -------- >>> from pandas.io.stata import StataReader >>> with StataReader("dta_file", chunksize=2) as reader: # doctest: +SKIP ... for i, block in enumerate(reader): ... print(i, block) ... # CategoricalConversionWarning: One or more series with value labels... """
[文档] class LossySetitemError(Exception): """ Raised when trying to do a __setitem__ on an np.ndarray that is not lossless. Notes ----- This is an internal error. """
[文档] class NoBufferPresent(Exception): """ Exception is raised in _get_data_buffer to signal that there is no requested buffer. """
[文档] class InvalidComparison(Exception): """ Exception is raised by _validate_comparison_value to indicate an invalid comparison. Notes ----- This is an internal error. """
__all__ = [ "AbstractMethodError", "AttributeConflictWarning", "CategoricalConversionWarning", "ChainedAssignmentError", "ClosedFileError", "CSSWarning", "DatabaseError", "DataError", "DtypeWarning", "DuplicateLabelError", "EmptyDataError", "IncompatibilityWarning", "IntCastingNaNError", "InvalidColumnName", "InvalidComparison", "InvalidIndexError", "InvalidVersion", "IndexingError", "LossySetitemError", "MergeError", "NoBufferPresent", "NullFrequencyError", "NumbaUtilError", "NumExprClobberingError", "OptionError", "OutOfBoundsDatetime", "OutOfBoundsTimedelta", "ParserError", "ParserWarning", "PerformanceWarning", "PossibleDataLossError", "PossiblePrecisionLoss", "PyperclipException", "PyperclipWindowsException", "SpecificationError", "UndefinedVariableError", "UnsortedIndexError", "UnsupportedFunctionCall", "ValueLabelTypeMismatch", ]