import numpy as np
from scipy.ndimage import maximum_filter, minimum_filter, convolve
from ..transform import integral_image
from .corner import structure_tensor
from ..morphology import octagon, star
from .censure_cy import _censure_dob_loop
from ..feature.util import (
FeatureDetector,
_prepare_grayscale_input_2D,
_mask_border_keypoints,
)
from .._shared.utils import check_nD
# The paper(Reference [1]) mentions the sizes of the Octagon shaped filter
# kernel for the first seven scales only. The sizes of the later scales
# have been extrapolated based on the following statement in the paper.
# "These octagons scale linearly and were experimentally chosen to correspond
# to the seven DOBs described in the previous section."
OCTAGON_OUTER_SHAPE = [
(5, 2),
(5, 3),
(7, 3),
(9, 4),
(9, 7),
(13, 7),
(15, 10),
(15, 11),
(15, 12),
(17, 13),
(17, 14),
]
OCTAGON_INNER_SHAPE = [
(3, 0),
(3, 1),
(3, 2),
(5, 2),
(5, 3),
(5, 4),
(5, 5),
(7, 5),
(7, 6),
(9, 6),
(9, 7),
]
# The sizes for the STAR shaped filter kernel for different scales have been
# taken from the OpenCV implementation.
STAR_SHAPE = [1, 2, 3, 4, 6, 8, 11, 12, 16, 22, 23, 32, 45, 46, 64, 90, 128]
STAR_FILTER_SHAPE = [
(1, 0),
(3, 1),
(4, 2),
(5, 3),
(7, 4),
(8, 5),
(9, 6),
(11, 8),
(13, 10),
(14, 11),
(15, 12),
(16, 14),
]
def _filter_image(image, min_scale, max_scale, mode):
response = np.zeros(
(image.shape[0], image.shape[1], max_scale - min_scale + 1), dtype=np.float64
)
if mode == 'dob':
# make response[:, :, i] contiguous memory block
item_size = response.itemsize
response.strides = (
item_size * response.shape[1],
item_size,
item_size * response.shape[0] * response.shape[1],
)
integral_img = integral_image(image)
for i in range(max_scale - min_scale + 1):
n = min_scale + i
# Constant multipliers for the outer region and the inner region
# of the bi-level filters with the constraint of keeping the
# DC bias 0.
inner_weight = 1.0 / (2 * n + 1) ** 2
outer_weight = 1.0 / (12 * n**2 + 4 * n)
_censure_dob_loop(
n, integral_img, response[:, :, i], inner_weight, outer_weight
)
# NOTE : For the Octagon shaped filter, we implemented and evaluated the
# slanted integral image based image filtering but the performance was
# more or less equal to image filtering using
# scipy.ndimage.filters.convolve(). Hence we have decided to use the
# later for a much cleaner implementation.
elif mode == 'octagon':
# TODO : Decide the shapes of Octagon filters for scales > 7
for i in range(max_scale - min_scale + 1):
mo, no = OCTAGON_OUTER_SHAPE[min_scale + i - 1]
mi, ni = OCTAGON_INNER_SHAPE[min_scale + i - 1]
response[:, :, i] = convolve(image, _octagon_kernel(mo, no, mi, ni))
elif mode == 'star':
for i in range(max_scale - min_scale + 1):
m = STAR_SHAPE[STAR_FILTER_SHAPE[min_scale + i - 1][0]]
n = STAR_SHAPE[STAR_FILTER_SHAPE[min_scale + i - 1][1]]
response[:, :, i] = convolve(image, _star_kernel(m, n))
return response
def _octagon_kernel(mo, no, mi, ni):
outer = (mo + 2 * no) ** 2 - 2 * no * (no + 1)
inner = (mi + 2 * ni) ** 2 - 2 * ni * (ni + 1)
outer_weight = 1.0 / (outer - inner)
inner_weight = 1.0 / inner
c = ((mo + 2 * no) - (mi + 2 * ni)) // 2
outer_oct = octagon(mo, no)
inner_oct = np.zeros((mo + 2 * no, mo + 2 * no))
inner_oct[c:-c, c:-c] = octagon(mi, ni)
bfilter = outer_weight * outer_oct - (outer_weight + inner_weight) * inner_oct
return bfilter
def _star_kernel(m, n):
c = m + m // 2 - n - n // 2
outer_star = star(m)
inner_star = np.zeros_like(outer_star)
inner_star[c:-c, c:-c] = star(n)
outer_weight = 1.0 / (np.sum(outer_star - inner_star))
inner_weight = 1.0 / np.sum(inner_star)
bfilter = outer_weight * outer_star - (outer_weight + inner_weight) * inner_star
return bfilter
def _suppress_lines(feature_mask, image, sigma, line_threshold):
Arr, Arc, Acc = structure_tensor(image, sigma, order='rc')
feature_mask[(Arr + Acc) ** 2 > line_threshold * (Arr * Acc - Arc**2)] = False
[文档]
class CENSURE(FeatureDetector):
"""CENSURE keypoint detector.
min_scale : int, optional
Minimum scale to extract keypoints from.
max_scale : int, optional
Maximum scale to extract keypoints from. The keypoints will be
extracted from all the scales except the first and the last i.e.
from the scales in the range [min_scale + 1, max_scale - 1]. The filter
sizes for different scales is such that the two adjacent scales
comprise of an octave.
mode : {'DoB', 'Octagon', 'STAR'}, optional
Type of bi-level filter used to get the scales of the input image.
Possible values are 'DoB', 'Octagon' and 'STAR'. The three modes
represent the shape of the bi-level filters i.e. box(square), octagon
and star respectively. For instance, a bi-level octagon filter consists
of a smaller inner octagon and a larger outer octagon with the filter
weights being uniformly negative in both the inner octagon while
uniformly positive in the difference region. Use STAR and Octagon for
better features and DoB for better performance.
non_max_threshold : float, optional
Threshold value used to suppress maximas and minimas with a weak
magnitude response obtained after Non-Maximal Suppression.
line_threshold : float, optional
Threshold for rejecting interest points which have ratio of principal
curvatures greater than this value.
Attributes
----------
keypoints : (N, 2) array
Keypoint coordinates as ``(row, col)``.
scales : (N,) array
Corresponding scales.
References
----------
.. [1] Motilal Agrawal, Kurt Konolige and Morten Rufus Blas
"CENSURE: Center Surround Extremas for Realtime Feature
Detection and Matching",
https://link.springer.com/chapter/10.1007/978-3-540-88693-8_8
:DOI:`10.1007/978-3-540-88693-8_8`
.. [2] Adam Schmidt, Marek Kraft, Michal Fularz and Zuzanna Domagala
"Comparative Assessment of Point Feature Detectors and
Descriptors in the Context of Robot Navigation"
http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-268aaf28-0faf-4872-a4df-7e2e61cb364c/c/Schmidt_comparative.pdf
:DOI:`10.1.1.465.1117`
Examples
--------
>>> from skimage.data import astronaut
>>> from skimage.color import rgb2gray
>>> from skimage.feature import CENSURE
>>> img = rgb2gray(astronaut()[100:300, 100:300])
>>> censure = CENSURE()
>>> censure.detect(img)
>>> censure.keypoints
array([[ 4, 148],
[ 12, 73],
[ 21, 176],
[ 91, 22],
[ 93, 56],
[ 94, 22],
[ 95, 54],
[100, 51],
[103, 51],
[106, 67],
[108, 15],
[117, 20],
[122, 60],
[125, 37],
[129, 37],
[133, 76],
[145, 44],
[146, 94],
[150, 114],
[153, 33],
[154, 156],
[155, 151],
[184, 63]])
>>> censure.scales
array([2, 6, 6, 2, 4, 3, 2, 3, 2, 6, 3, 2, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2,
2])
"""
[文档]
def __init__(
self,
min_scale=1,
max_scale=7,
mode='DoB',
non_max_threshold=0.15,
line_threshold=10,
):
mode = mode.lower()
if mode not in ('dob', 'octagon', 'star'):
raise ValueError("`mode` must be one of 'DoB', 'Octagon', 'STAR'.")
if min_scale < 1 or max_scale < 1 or max_scale - min_scale < 2:
raise ValueError(
'The scales must be >= 1 and the number of ' 'scales should be >= 3.'
)
self.min_scale = min_scale
self.max_scale = max_scale
self.mode = mode
self.non_max_threshold = non_max_threshold
self.line_threshold = line_threshold
self.keypoints = None
self.scales = None
[文档]
def detect(self, image):
"""Detect CENSURE keypoints along with the corresponding scale.
Parameters
----------
image : 2D ndarray
Input image.
"""
# (1) First we generate the required scales on the input grayscale
# image using a bi-level filter and stack them up in `filter_response`.
# (2) We then perform Non-Maximal suppression in 3 x 3 x 3 window on
# the filter_response to suppress points that are neither minima or
# maxima in 3 x 3 x 3 neighborhood. We obtain a boolean ndarray
# `feature_mask` containing all the minimas and maximas in
# `filter_response` as True.
# (3) Then we suppress all the points in the `feature_mask` for which
# the corresponding point in the image at a particular scale has the
# ratio of principal curvatures greater than `line_threshold`.
# (4) Finally, we remove the border keypoints and return the keypoints
# along with its corresponding scale.
check_nD(image, 2)
num_scales = self.max_scale - self.min_scale
image = np.ascontiguousarray(_prepare_grayscale_input_2D(image))
# Generating all the scales
filter_response = _filter_image(
image, self.min_scale, self.max_scale, self.mode
)
# Suppressing points that are neither minima or maxima in their
# 3 x 3 x 3 neighborhood to zero
minimas = minimum_filter(filter_response, (3, 3, 3)) == filter_response
maximas = maximum_filter(filter_response, (3, 3, 3)) == filter_response
feature_mask = minimas | maximas
feature_mask[filter_response < self.non_max_threshold] = False
for i in range(1, num_scales):
# sigma = (window_size - 1) / 6.0, so the window covers > 99% of
# the kernel's distribution
# window_size = 7 + 2 * (min_scale - 1 + i)
# Hence sigma = 1 + (min_scale - 1 + i)/ 3.0
_suppress_lines(
feature_mask[:, :, i],
image,
(1 + (self.min_scale + i - 1) / 3.0),
self.line_threshold,
)
rows, cols, scales = np.nonzero(feature_mask[..., 1:num_scales])
keypoints = np.column_stack([rows, cols])
scales = scales + self.min_scale + 1
if self.mode == 'dob':
self.keypoints = keypoints
self.scales = scales
return
cumulative_mask = np.zeros(keypoints.shape[0], dtype=bool)
if self.mode == 'octagon':
for i in range(self.min_scale + 1, self.max_scale):
c = (OCTAGON_OUTER_SHAPE[i - 1][0] - 1) // 2 + OCTAGON_OUTER_SHAPE[
i - 1
][1]
cumulative_mask |= _mask_border_keypoints(image.shape, keypoints, c) & (
scales == i
)
elif self.mode == 'star':
for i in range(self.min_scale + 1, self.max_scale):
c = (
STAR_SHAPE[STAR_FILTER_SHAPE[i - 1][0]]
+ STAR_SHAPE[STAR_FILTER_SHAPE[i - 1][0]] // 2
)
cumulative_mask |= _mask_border_keypoints(image.shape, keypoints, c) & (
scales == i
)
self.keypoints = keypoints[cumulative_mask]
self.scales = scales[cumulative_mask]