skimage.feature.util 源代码

import numpy as np

from ..util import img_as_float
from .._shared.utils import (
    _supported_float_type,
    check_nD,
    deprecate_func,
)


class FeatureDetector:
    def __init__(self):
        self.keypoints_ = np.array([])

    def detect(self, image):
        """Detect keypoints in image.

        Parameters
        ----------
        image : 2D array
            Input image.

        """
        raise NotImplementedError()


class DescriptorExtractor:
    def __init__(self):
        self.descriptors_ = np.array([])

    def extract(self, image, keypoints):
        """Extract feature descriptors in image for given keypoints.

        Parameters
        ----------
        image : 2D array
            Input image.
        keypoints : (N, 2) array
            Keypoint locations as ``(row, col)``.

        """
        raise NotImplementedError()


[文档] @deprecate_func( deprecated_version="0.23", removed_version="0.25", hint="Use `skimage.feature.plot_matched_features` instead.", ) def plot_matches( ax, image1, image2, keypoints1, keypoints2, matches, keypoints_color='k', matches_color=None, only_matches=False, alignment='horizontal', ): """Plot matched features. .. deprecated:: 0.23 Parameters ---------- ax : matplotlib.axes.Axes Matches and image are drawn in this ax. image1 : (N, M [, 3]) array First grayscale or color image. image2 : (N, M [, 3]) array Second grayscale or color image. keypoints1 : (K1, 2) array First keypoint coordinates as ``(row, col)``. keypoints2 : (K2, 2) array Second keypoint coordinates as ``(row, col)``. matches : (Q, 2) array Indices of corresponding matches in first and second set of descriptors, where ``matches[:, 0]`` denote the indices in the first and ``matches[:, 1]`` the indices in the second set of descriptors. keypoints_color : matplotlib color, optional Color for keypoint locations. matches_color : matplotlib color, optional Color for lines which connect keypoint matches. By default the color is chosen randomly. only_matches : bool, optional Whether to only plot matches and not plot the keypoint locations. alignment : {'horizontal', 'vertical'}, optional Whether to show images side by side, ``'horizontal'``, or one above the other, ``'vertical'``. """ image1 = img_as_float(image1) image2 = img_as_float(image2) new_shape1 = list(image1.shape) new_shape2 = list(image2.shape) if image1.shape[0] < image2.shape[0]: new_shape1[0] = image2.shape[0] elif image1.shape[0] > image2.shape[0]: new_shape2[0] = image1.shape[0] if image1.shape[1] < image2.shape[1]: new_shape1[1] = image2.shape[1] elif image1.shape[1] > image2.shape[1]: new_shape2[1] = image1.shape[1] if new_shape1 != image1.shape: new_image1 = np.zeros(new_shape1, dtype=image1.dtype) new_image1[: image1.shape[0], : image1.shape[1]] = image1 image1 = new_image1 if new_shape2 != image2.shape: new_image2 = np.zeros(new_shape2, dtype=image2.dtype) new_image2[: image2.shape[0], : image2.shape[1]] = image2 image2 = new_image2 offset = np.array(image1.shape) if alignment == 'horizontal': image = np.concatenate([image1, image2], axis=1) offset[0] = 0 elif alignment == 'vertical': image = np.concatenate([image1, image2], axis=0) offset[1] = 0 else: mesg = ( f"plot_matches accepts either 'horizontal' or 'vertical' for " f"alignment, but '{alignment}' was given. See " f"https://scikit-image.org/docs/dev/api/skimage.feature.html#skimage.feature.plot_matches " # noqa f"for details." ) raise ValueError(mesg) if not only_matches: ax.scatter( keypoints1[:, 1], keypoints1[:, 0], facecolors='none', edgecolors=keypoints_color, ) ax.scatter( keypoints2[:, 1] + offset[1], keypoints2[:, 0] + offset[0], facecolors='none', edgecolors=keypoints_color, ) ax.imshow(image, cmap='gray') ax.axis((0, image1.shape[1] + offset[1], image1.shape[0] + offset[0], 0)) rng = np.random.default_rng() for i in range(matches.shape[0]): idx1 = matches[i, 0] idx2 = matches[i, 1] if matches_color is None: color = rng.random(3) else: color = matches_color ax.plot( (keypoints1[idx1, 1], keypoints2[idx2, 1] + offset[1]), (keypoints1[idx1, 0], keypoints2[idx2, 0] + offset[0]), '-', color=color, )
def plot_matched_features( image0, image1, *, keypoints0, keypoints1, matches, ax, keypoints_color='k', matches_color=None, only_matches=False, alignment='horizontal', ): """Plot matched features between two images. .. versionadded:: 0.23 Parameters ---------- image0 : (N, M [, 3]) array First image. image1 : (N, M [, 3]) array Second image. keypoints0 : (K1, 2) array First keypoint coordinates as ``(row, col)``. keypoints1 : (K2, 2) array Second keypoint coordinates as ``(row, col)``. matches : (Q, 2) array Indices of corresponding matches in first and second sets of descriptors, where `matches[:, 0]` (resp. `matches[:, 1]`) contains the indices in the first (resp. second) set of descriptors. ax : matplotlib.axes.Axes The Axes object where the images and their matched features are drawn. keypoints_color : matplotlib color, optional Color for keypoint locations. matches_color : matplotlib color, optional Color for lines which connect keypoint matches. By default the color is chosen randomly. only_matches : bool, optional Set to True to plot matches only and not the keypoint locations. alignment : {'horizontal', 'vertical'}, optional Whether to show the two images side by side (`'horizontal'`), or one above the other (`'vertical'`). """ image0 = img_as_float(image0) image1 = img_as_float(image1) new_shape0 = list(image0.shape) new_shape1 = list(image1.shape) if image0.shape[0] < image1.shape[0]: new_shape0[0] = image1.shape[0] elif image0.shape[0] > image1.shape[0]: new_shape1[0] = image0.shape[0] if image0.shape[1] < image1.shape[1]: new_shape0[1] = image1.shape[1] elif image0.shape[1] > image1.shape[1]: new_shape1[1] = image0.shape[1] if new_shape0 != image0.shape: new_image0 = np.zeros(new_shape0, dtype=image0.dtype) new_image0[: image0.shape[0], : image0.shape[1]] = image0 image0 = new_image0 if new_shape1 != image1.shape: new_image1 = np.zeros(new_shape1, dtype=image1.dtype) new_image1[: image1.shape[0], : image1.shape[1]] = image1 image1 = new_image1 offset = np.array(image0.shape) if alignment == 'horizontal': image = np.concatenate([image0, image1], axis=1) offset[0] = 0 elif alignment == 'vertical': image = np.concatenate([image0, image1], axis=0) offset[1] = 0 else: mesg = ( f"`plot_matched_features` accepts either 'horizontal' or 'vertical' for " f"alignment, but '{alignment}' was given. See " f"https://scikit-image.org/docs/dev/api/skimage.feature.html#skimage.feature.plot_matched_features " # noqa f"for details." ) raise ValueError(mesg) if not only_matches: ax.scatter( keypoints0[:, 1], keypoints0[:, 0], facecolors='none', edgecolors=keypoints_color, ) ax.scatter( keypoints1[:, 1] + offset[1], keypoints1[:, 0] + offset[0], facecolors='none', edgecolors=keypoints_color, ) ax.imshow(image, cmap='gray') ax.axis((0, image0.shape[1] + offset[1], image0.shape[0] + offset[0], 0)) rng = np.random.default_rng() for i in range(matches.shape[0]): idx0 = matches[i, 0] idx1 = matches[i, 1] if matches_color is None: color = rng.random(3) else: color = matches_color ax.plot( (keypoints0[idx0, 1], keypoints1[idx1, 1] + offset[1]), (keypoints0[idx0, 0], keypoints1[idx1, 0] + offset[0]), '-', color=color, ) def _prepare_grayscale_input_2D(image): image = np.squeeze(image) check_nD(image, 2) image = img_as_float(image) float_dtype = _supported_float_type(image.dtype) return image.astype(float_dtype, copy=False) def _prepare_grayscale_input_nD(image): image = np.squeeze(image) check_nD(image, range(2, 6)) image = img_as_float(image) float_dtype = _supported_float_type(image.dtype) return image.astype(float_dtype, copy=False) def _mask_border_keypoints(image_shape, keypoints, distance): """Mask coordinates that are within certain distance from the image border. Parameters ---------- image_shape : (2,) array_like Shape of the image as ``(rows, cols)``. keypoints : (N, 2) array Keypoint coordinates as ``(rows, cols)``. distance : int Image border distance. Returns ------- mask : (N,) bool array Mask indicating if pixels are within the image (``True``) or in the border region of the image (``False``). """ rows = image_shape[0] cols = image_shape[1] mask = ( ((distance - 1) < keypoints[:, 0]) & (keypoints[:, 0] < (rows - distance + 1)) & ((distance - 1) < keypoints[:, 1]) & (keypoints[:, 1] < (cols - distance + 1)) ) return mask