skimage.filters._gabor 源代码

import math

import numpy as np
from scipy import ndimage as ndi

from .._shared.utils import _supported_float_type, check_nD

__all__ = ['gabor_kernel', 'gabor']


def _sigma_prefactor(bandwidth):
    b = bandwidth
    # See http://www.cs.rug.nl/~imaging/simplecell.html
    return 1.0 / np.pi * math.sqrt(math.log(2) / 2.0) * (2.0**b + 1) / (2.0**b - 1)


[文档] def gabor_kernel( frequency, theta=0, bandwidth=1, sigma_x=None, sigma_y=None, n_stds=3, offset=0, dtype=np.complex128, ): """Return complex 2D Gabor filter kernel. Gabor kernel is a Gaussian kernel modulated by a complex harmonic function. Harmonic function consists of an imaginary sine function and a real cosine function. Spatial frequency is inversely proportional to the wavelength of the harmonic and to the standard deviation of a Gaussian kernel. The bandwidth is also inversely proportional to the standard deviation. Parameters ---------- frequency : float Spatial frequency of the harmonic function. Specified in pixels. theta : float, optional Orientation in radians. If 0, the harmonic is in the x-direction. bandwidth : float, optional The bandwidth captured by the filter. For fixed bandwidth, ``sigma_x`` and ``sigma_y`` will decrease with increasing frequency. This value is ignored if ``sigma_x`` and ``sigma_y`` are set by the user. sigma_x, sigma_y : float, optional Standard deviation in x- and y-directions. These directions apply to the kernel *before* rotation. If `theta = pi/2`, then the kernel is rotated 90 degrees so that ``sigma_x`` controls the *vertical* direction. n_stds : scalar, optional The linear size of the kernel is n_stds (3 by default) standard deviations offset : float, optional Phase offset of harmonic function in radians. dtype : {np.complex64, np.complex128} Specifies if the filter is single or double precision complex. Returns ------- g : complex array Complex filter kernel. References ---------- .. [1] https://en.wikipedia.org/wiki/Gabor_filter .. [2] https://web.archive.org/web/20180127125930/http://mplab.ucsd.edu/tutorials/gabor.pdf Examples -------- >>> from skimage.filters import gabor_kernel >>> from skimage import io >>> from matplotlib import pyplot as plt # doctest: +SKIP >>> gk = gabor_kernel(frequency=0.2) >>> plt.figure() # doctest: +SKIP >>> io.imshow(gk.real) # doctest: +SKIP >>> io.show() # doctest: +SKIP >>> # more ripples (equivalent to increasing the size of the >>> # Gaussian spread) >>> gk = gabor_kernel(frequency=0.2, bandwidth=0.1) >>> plt.figure() # doctest: +SKIP >>> io.imshow(gk.real) # doctest: +SKIP >>> io.show() # doctest: +SKIP """ if sigma_x is None: sigma_x = _sigma_prefactor(bandwidth) / frequency if sigma_y is None: sigma_y = _sigma_prefactor(bandwidth) / frequency if np.dtype(dtype).kind != 'c': raise ValueError("dtype must be complex") ct = math.cos(theta) st = math.sin(theta) x0 = math.ceil(max(abs(n_stds * sigma_x * ct), abs(n_stds * sigma_y * st), 1)) y0 = math.ceil(max(abs(n_stds * sigma_y * ct), abs(n_stds * sigma_x * st), 1)) y, x = np.meshgrid( np.arange(-y0, y0 + 1), np.arange(-x0, x0 + 1), indexing='ij', sparse=True ) rotx = x * ct + y * st roty = -x * st + y * ct g = np.empty(roty.shape, dtype=dtype) np.exp( -0.5 * (rotx**2 / sigma_x**2 + roty**2 / sigma_y**2) + 1j * (2 * np.pi * frequency * rotx + offset), out=g, ) g *= 1 / (2 * np.pi * sigma_x * sigma_y) return g
[文档] def gabor( image, frequency, theta=0, bandwidth=1, sigma_x=None, sigma_y=None, n_stds=3, offset=0, mode='reflect', cval=0, ): """Return real and imaginary responses to Gabor filter. The real and imaginary parts of the Gabor filter kernel are applied to the image and the response is returned as a pair of arrays. Gabor filter is a linear filter with a Gaussian kernel which is modulated by a sinusoidal plane wave. Frequency and orientation representations of the Gabor filter are similar to those of the human visual system. Gabor filter banks are commonly used in computer vision and image processing. They are especially suitable for edge detection and texture classification. Parameters ---------- image : 2-D array Input image. frequency : float Spatial frequency of the harmonic function. Specified in pixels. theta : float, optional Orientation in radians. If 0, the harmonic is in the x-direction. bandwidth : float, optional The bandwidth captured by the filter. For fixed bandwidth, ``sigma_x`` and ``sigma_y`` will decrease with increasing frequency. This value is ignored if ``sigma_x`` and ``sigma_y`` are set by the user. sigma_x, sigma_y : float, optional Standard deviation in x- and y-directions. These directions apply to the kernel *before* rotation. If `theta = pi/2`, then the kernel is rotated 90 degrees so that ``sigma_x`` controls the *vertical* direction. n_stds : scalar, optional The linear size of the kernel is n_stds (3 by default) standard deviations. offset : float, optional Phase offset of harmonic function in radians. mode : {'constant', 'nearest', 'reflect', 'mirror', 'wrap'}, optional Mode used to convolve image with a kernel, passed to `ndi.convolve` cval : scalar, optional Value to fill past edges of input if ``mode`` of convolution is 'constant'. The parameter is passed to `ndi.convolve`. Returns ------- real, imag : arrays Filtered images using the real and imaginary parts of the Gabor filter kernel. Images are of the same dimensions as the input one. References ---------- .. [1] https://en.wikipedia.org/wiki/Gabor_filter .. [2] https://web.archive.org/web/20180127125930/http://mplab.ucsd.edu/tutorials/gabor.pdf Examples -------- >>> from skimage.filters import gabor >>> from skimage import data, io >>> from matplotlib import pyplot as plt # doctest: +SKIP >>> image = data.coins() >>> # detecting edges in a coin image >>> filt_real, filt_imag = gabor(image, frequency=0.6) >>> plt.figure() # doctest: +SKIP >>> io.imshow(filt_real) # doctest: +SKIP >>> io.show() # doctest: +SKIP >>> # less sensitivity to finer details with the lower frequency kernel >>> filt_real, filt_imag = gabor(image, frequency=0.1) >>> plt.figure() # doctest: +SKIP >>> io.imshow(filt_real) # doctest: +SKIP >>> io.show() # doctest: +SKIP """ check_nD(image, 2) # do not cast integer types to float! if image.dtype.kind == 'f': float_dtype = _supported_float_type(image.dtype) image = image.astype(float_dtype, copy=False) kernel_dtype = np.promote_types(image.dtype, np.complex64) else: kernel_dtype = np.complex128 g = gabor_kernel( frequency, theta, bandwidth, sigma_x, sigma_y, n_stds, offset, dtype=kernel_dtype, ) filtered_real = ndi.convolve(image, np.real(g), mode=mode, cval=cval) filtered_imag = ndi.convolve(image, np.imag(g), mode=mode, cval=cval) return filtered_real, filtered_imag