skimage.filters.ridges 源代码

"""
Ridge filters.

Ridge filters can be used to detect continuous edges, such as vessels,
neurites, wrinkles, rivers, and other tube-like structures. The present
class of ridge filters relies on the eigenvalues of the Hessian matrix of
image intensities to detect tube-like structures where the intensity changes
perpendicular but not along the structure.
"""

from warnings import warn

import numpy as np
from scipy import linalg

from .._shared.utils import _supported_float_type, check_nD
from ..feature.corner import hessian_matrix, hessian_matrix_eigvals


[文档] def meijering( image, sigmas=range(1, 10, 2), alpha=None, black_ridges=True, mode='reflect', cval=0 ): """ Filter an image with the Meijering neuriteness filter. This filter can be used to detect continuous ridges, e.g. neurites, wrinkles, rivers. It can be used to calculate the fraction of the whole image containing such objects. Calculates the eigenvalues of the Hessian to compute the similarity of an image region to neurites, according to the method described in [1]_. Parameters ---------- image : (M, N[, ...]) ndarray Array with input image data. sigmas : iterable of floats, optional Sigmas used as scales of filter alpha : float, optional Shaping filter constant, that selects maximally flat elongated features. The default, None, selects the optimal value -1/(ndim+1). black_ridges : boolean, optional When True (the default), the filter detects black ridges; when False, it detects white ridges. mode : {'constant', 'reflect', 'wrap', 'nearest', 'mirror'}, optional How to handle values outside the image borders. cval : float, optional Used in conjunction with mode 'constant', the value outside the image boundaries. Returns ------- out : (M, N[, ...]) ndarray Filtered image (maximum of pixels across all scales). See also -------- sato frangi hessian References ---------- .. [1] Meijering, E., Jacob, M., Sarria, J. C., Steiner, P., Hirling, H., Unser, M. (2004). Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytometry Part A, 58(2), 167-176. :DOI:`10.1002/cyto.a.20022` """ image = image.astype(_supported_float_type(image.dtype), copy=False) if not black_ridges: # Normalize to black ridges. image = -image if alpha is None: alpha = 1 / (image.ndim + 1) mtx = linalg.circulant([1, *[alpha] * (image.ndim - 1)]).astype(image.dtype) # Generate empty array for storing maximum value # from different (sigma) scales filtered_max = np.zeros_like(image) for sigma in sigmas: # Filter for all sigmas. eigvals = hessian_matrix_eigvals( hessian_matrix( image, sigma, mode=mode, cval=cval, use_gaussian_derivatives=True ) ) # Compute normalized eigenvalues l_i = e_i + sum_{j!=i} alpha * e_j. vals = np.tensordot(mtx, eigvals, 1) # Get largest normalized eigenvalue (by magnitude) at each pixel. vals = np.take_along_axis(vals, abs(vals).argmax(0)[None], 0).squeeze(0) # Remove negative values. vals = np.maximum(vals, 0) # Normalize to max = 1 (unless everything is already zero). max_val = vals.max() if max_val > 0: vals /= max_val filtered_max = np.maximum(filtered_max, vals) return filtered_max # Return pixel-wise max over all sigmas.
[文档] def sato(image, sigmas=range(1, 10, 2), black_ridges=True, mode='reflect', cval=0): """ Filter an image with the Sato tubeness filter. This filter can be used to detect continuous ridges, e.g. tubes, wrinkles, rivers. It can be used to calculate the fraction of the whole image containing such objects. Defined only for 2-D and 3-D images. Calculates the eigenvalues of the Hessian to compute the similarity of an image region to tubes, according to the method described in [1]_. Parameters ---------- image : (M, N[, P]) ndarray Array with input image data. sigmas : iterable of floats, optional Sigmas used as scales of filter. black_ridges : boolean, optional When True (the default), the filter detects black ridges; when False, it detects white ridges. mode : {'constant', 'reflect', 'wrap', 'nearest', 'mirror'}, optional How to handle values outside the image borders. cval : float, optional Used in conjunction with mode 'constant', the value outside the image boundaries. Returns ------- out : (M, N[, P]) ndarray Filtered image (maximum of pixels across all scales). See also -------- meijering frangi hessian References ---------- .. [1] Sato, Y., Nakajima, S., Shiraga, N., Atsumi, H., Yoshida, S., Koller, T., ..., Kikinis, R. (1998). Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Medical image analysis, 2(2), 143-168. :DOI:`10.1016/S1361-8415(98)80009-1` """ check_nD(image, [2, 3]) # Check image dimensions. image = image.astype(_supported_float_type(image.dtype), copy=False) if not black_ridges: # Normalize to black ridges. image = -image # Generate empty array for storing maximum value # from different (sigma) scales filtered_max = np.zeros_like(image) for sigma in sigmas: # Filter for all sigmas. eigvals = hessian_matrix_eigvals( hessian_matrix( image, sigma, mode=mode, cval=cval, use_gaussian_derivatives=True ) ) # Compute normalized tubeness (eqs. (9) and (22), ref. [1]_) as the # geometric mean of eigvals other than the lowest one # (hessian_matrix_eigvals returns eigvals in decreasing order), clipped # to 0, multiplied by sigma^2. eigvals = eigvals[:-1] vals = sigma**2 * np.prod(np.maximum(eigvals, 0), 0) ** (1 / len(eigvals)) filtered_max = np.maximum(filtered_max, vals) return filtered_max # Return pixel-wise max over all sigmas.
[文档] def frangi( image, sigmas=range(1, 10, 2), scale_range=None, scale_step=None, alpha=0.5, beta=0.5, gamma=None, black_ridges=True, mode='reflect', cval=0, ): """ Filter an image with the Frangi vesselness filter. This filter can be used to detect continuous ridges, e.g. vessels, wrinkles, rivers. It can be used to calculate the fraction of the whole image containing such objects. Defined only for 2-D and 3-D images. Calculates the eigenvalues of the Hessian to compute the similarity of an image region to vessels, according to the method described in [1]_. Parameters ---------- image : (M, N[, P]) ndarray Array with input image data. sigmas : iterable of floats, optional Sigmas used as scales of filter, i.e., np.arange(scale_range[0], scale_range[1], scale_step) scale_range : 2-tuple of floats, optional The range of sigmas used. scale_step : float, optional Step size between sigmas. alpha : float, optional Frangi correction constant that adjusts the filter's sensitivity to deviation from a plate-like structure. beta : float, optional Frangi correction constant that adjusts the filter's sensitivity to deviation from a blob-like structure. gamma : float, optional Frangi correction constant that adjusts the filter's sensitivity to areas of high variance/texture/structure. The default, None, uses half of the maximum Hessian norm. black_ridges : boolean, optional When True (the default), the filter detects black ridges; when False, it detects white ridges. mode : {'constant', 'reflect', 'wrap', 'nearest', 'mirror'}, optional How to handle values outside the image borders. cval : float, optional Used in conjunction with mode 'constant', the value outside the image boundaries. Returns ------- out : (M, N[, P]) ndarray Filtered image (maximum of pixels across all scales). Notes ----- Earlier versions of this filter were implemented by Marc Schrijver, (November 2001), D. J. Kroon, University of Twente (May 2009) [2]_, and D. G. Ellis (January 2017) [3]_. See also -------- meijering sato hessian References ---------- .. [1] Frangi, A. F., Niessen, W. J., Vincken, K. L., & Viergever, M. A. (1998,). Multiscale vessel enhancement filtering. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 130-137). Springer Berlin Heidelberg. :DOI:`10.1007/BFb0056195` .. [2] Kroon, D. J.: Hessian based Frangi vesselness filter. .. [3] Ellis, D. G.: https://github.com/ellisdg/frangi3d/tree/master/frangi """ if scale_range is not None and scale_step is not None: warn( 'Use keyword parameter `sigmas` instead of `scale_range` and ' '`scale_range` which will be removed in version 0.17.', stacklevel=2, ) sigmas = np.arange(scale_range[0], scale_range[1], scale_step) check_nD(image, [2, 3]) # Check image dimensions. image = image.astype(_supported_float_type(image.dtype), copy=False) if not black_ridges: # Normalize to black ridges. image = -image # Generate empty array for storing maximum value # from different (sigma) scales filtered_max = np.zeros_like(image) for sigma in sigmas: # Filter for all sigmas. eigvals = hessian_matrix_eigvals( hessian_matrix( image, sigma, mode=mode, cval=cval, use_gaussian_derivatives=True ) ) # Sort eigenvalues by magnitude. eigvals = np.take_along_axis(eigvals, abs(eigvals).argsort(0), 0) lambda1 = eigvals[0] if image.ndim == 2: (lambda2,) = np.maximum(eigvals[1:], 1e-10) r_a = np.inf # implied by eq. (15). r_b = abs(lambda1) / lambda2 # eq. (15). else: # ndim == 3 lambda2, lambda3 = np.maximum(eigvals[1:], 1e-10) r_a = lambda2 / lambda3 # eq. (11). r_b = abs(lambda1) / np.sqrt(lambda2 * lambda3) # eq. (10). s = np.sqrt((eigvals**2).sum(0)) # eq. (12). if gamma is None: gamma = s.max() / 2 if gamma == 0: gamma = 1 # If s == 0 everywhere, gamma doesn't matter. # Filtered image, eq. (13) and (15). Our implementation relies on the # blobness exponential factor underflowing to zero whenever the second # or third eigenvalues are negative (we clip them to 1e-10, to make r_b # very large). vals = 1.0 - np.exp( -(r_a**2) / (2 * alpha**2), dtype=image.dtype ) # plate sensitivity vals *= np.exp(-(r_b**2) / (2 * beta**2), dtype=image.dtype) # blobness vals *= 1.0 - np.exp( -(s**2) / (2 * gamma**2), dtype=image.dtype ) # structuredness filtered_max = np.maximum(filtered_max, vals) return filtered_max # Return pixel-wise max over all sigmas.
[文档] def hessian( image, sigmas=range(1, 10, 2), scale_range=None, scale_step=None, alpha=0.5, beta=0.5, gamma=15, black_ridges=True, mode='reflect', cval=0, ): """Filter an image with the Hybrid Hessian filter. This filter can be used to detect continuous edges, e.g. vessels, wrinkles, rivers. It can be used to calculate the fraction of the whole image containing such objects. Defined only for 2-D and 3-D images. Almost equal to Frangi filter, but uses alternative method of smoothing. Refer to [1]_ to find the differences between Frangi and Hessian filters. Parameters ---------- image : (M, N[, P]) ndarray Array with input image data. sigmas : iterable of floats, optional Sigmas used as scales of filter, i.e., np.arange(scale_range[0], scale_range[1], scale_step) scale_range : 2-tuple of floats, optional The range of sigmas used. scale_step : float, optional Step size between sigmas. beta : float, optional Frangi correction constant that adjusts the filter's sensitivity to deviation from a blob-like structure. gamma : float, optional Frangi correction constant that adjusts the filter's sensitivity to areas of high variance/texture/structure. black_ridges : boolean, optional When True (the default), the filter detects black ridges; when False, it detects white ridges. mode : {'constant', 'reflect', 'wrap', 'nearest', 'mirror'}, optional How to handle values outside the image borders. cval : float, optional Used in conjunction with mode 'constant', the value outside the image boundaries. Returns ------- out : (M, N[, P]) ndarray Filtered image (maximum of pixels across all scales). Notes ----- Written by Marc Schrijver (November 2001) Re-Written by D. J. Kroon University of Twente (May 2009) [2]_ See also -------- meijering sato frangi References ---------- .. [1] Ng, C. C., Yap, M. H., Costen, N., & Li, B. (2014,). Automatic wrinkle detection using hybrid Hessian filter. In Asian Conference on Computer Vision (pp. 609-622). Springer International Publishing. :DOI:`10.1007/978-3-319-16811-1_40` .. [2] Kroon, D. J.: Hessian based Frangi vesselness filter. """ filtered = frangi( image, sigmas=sigmas, scale_range=scale_range, scale_step=scale_step, alpha=alpha, beta=beta, gamma=gamma, black_ridges=black_ridges, mode=mode, cval=cval, ) filtered[filtered <= 0] = 1 return filtered