skimage.measure._blur_effect 源代码
import numpy as np
import scipy.ndimage as ndi
from ..color import rgb2gray
from ..util import img_as_float
# TODO: when minimum numpy dependency is 1.25 use:
# np..exceptions.AxisError instead of AxisError
# and remove this try-except
try:
from numpy import AxisError
except ImportError:
from numpy.exceptions import AxisError
__all__ = ['blur_effect']
[文档]
def blur_effect(image, h_size=11, channel_axis=None, reduce_func=np.max):
"""Compute a metric that indicates the strength of blur in an image
(0 for no blur, 1 for maximal blur).
Parameters
----------
image : ndarray
RGB or grayscale nD image. The input image is converted to grayscale
before computing the blur metric.
h_size : int, optional
Size of the re-blurring filter.
channel_axis : int or None, optional
If None, the image is assumed to be grayscale (single-channel).
Otherwise, this parameter indicates which axis of the array
corresponds to color channels.
reduce_func : callable, optional
Function used to calculate the aggregation of blur metrics along all
axes. If set to None, the entire list is returned, where the i-th
element is the blur metric along the i-th axis.
Returns
-------
blur : float (0 to 1) or list of floats
Blur metric: by default, the maximum of blur metrics along all axes.
Notes
-----
`h_size` must keep the same value in order to compare results between
images. Most of the time, the default size (11) is enough. This means that
the metric can clearly discriminate blur up to an average 11x11 filter; if
blur is higher, the metric still gives good results but its values tend
towards an asymptote.
References
----------
.. [1] Frederique Crete, Thierry Dolmiere, Patricia Ladret, and Marina
Nicolas "The blur effect: perception and estimation with a new
no-reference perceptual blur metric" Proc. SPIE 6492, Human Vision and
Electronic Imaging XII, 64920I (2007)
https://hal.archives-ouvertes.fr/hal-00232709
:DOI:`10.1117/12.702790`
"""
if channel_axis is not None:
try:
# ensure color channels are in the final dimension
image = np.moveaxis(image, channel_axis, -1)
except AxisError:
print('channel_axis must be one of the image array dimensions')
raise
except TypeError:
print('channel_axis must be an integer')
raise
image = rgb2gray(image)
n_axes = image.ndim
image = img_as_float(image)
shape = image.shape
B = []
from ..filters import sobel
slices = tuple([slice(2, s - 1) for s in shape])
for ax in range(n_axes):
filt_im = ndi.uniform_filter1d(image, h_size, axis=ax)
im_sharp = np.abs(sobel(image, axis=ax))
im_blur = np.abs(sobel(filt_im, axis=ax))
T = np.maximum(0, im_sharp - im_blur)
M1 = np.sum(im_sharp[slices])
M2 = np.sum(T[slices])
B.append(np.abs(M1 - M2) / M1)
return B if reduce_func is None else reduce_func(B)