skimage.morphology.convex_hull 源代码

"""Convex Hull."""

from itertools import product
import numpy as np
from scipy.spatial import ConvexHull, QhullError
from ..measure.pnpoly import grid_points_in_poly
from ._convex_hull import possible_hull
from ..measure._label import label
from ..util import unique_rows
from .._shared.utils import warn

__all__ = ['convex_hull_image', 'convex_hull_object']


def _offsets_diamond(ndim):
    offsets = np.zeros((2 * ndim, ndim))
    for vertex, (axis, offset) in enumerate(product(range(ndim), (-0.5, 0.5))):
        offsets[vertex, axis] = offset
    return offsets


def _check_coords_in_hull(gridcoords, hull_equations, tolerance):
    r"""Checks all the coordinates for inclusiveness in the convex hull.

    Parameters
    ----------
    gridcoords : (M, N) ndarray
        Coordinates of ``N`` points in ``M`` dimensions.
    hull_equations : (M, N) ndarray
        Hyperplane equations of the facets of the convex hull.
    tolerance : float
        Tolerance when determining whether a point is inside the hull. Due
        to numerical floating point errors, a tolerance of 0 can result in
        some points erroneously being classified as being outside the hull.

    Returns
    -------
    coords_in_hull : ndarray of bool
        Binary 1D ndarray representing points in n-dimensional space
        with value ``True`` set for points inside the convex hull.

    Notes
    -----
    Checking the inclusiveness of coordinates in a convex hull requires
    intermediate calculations of dot products which are memory-intensive.
    Thus, the convex hull equations are checked individually with all
    coordinates to keep within the memory limit.

    References
    ----------
    .. [1] https://github.com/scikit-image/scikit-image/issues/5019

    """
    ndim, n_coords = gridcoords.shape
    n_hull_equations = hull_equations.shape[0]
    coords_in_hull = np.ones(n_coords, dtype=bool)

    # Pre-allocate arrays to cache intermediate results for reducing overheads
    dot_array = np.empty(n_coords, dtype=np.float64)
    test_ineq_temp = np.empty(n_coords, dtype=np.float64)
    coords_single_ineq = np.empty(n_coords, dtype=bool)

    # A point is in the hull if it satisfies all of the hull's inequalities
    for idx in range(n_hull_equations):
        # Tests a hyperplane equation on all coordinates of volume
        np.dot(hull_equations[idx, :ndim], gridcoords, out=dot_array)
        np.add(dot_array, hull_equations[idx, ndim:], out=test_ineq_temp)
        np.less(test_ineq_temp, tolerance, out=coords_single_ineq)
        coords_in_hull *= coords_single_ineq

    return coords_in_hull


[文档] def convex_hull_image( image, offset_coordinates=True, tolerance=1e-10, include_borders=True ): """Compute the convex hull image of a binary image. The convex hull is the set of pixels included in the smallest convex polygon that surround all white pixels in the input image. Parameters ---------- image : array Binary input image. This array is cast to bool before processing. offset_coordinates : bool, optional If ``True``, a pixel at coordinate, e.g., (4, 7) will be represented by coordinates (3.5, 7), (4.5, 7), (4, 6.5), and (4, 7.5). This adds some "extent" to a pixel when computing the hull. tolerance : float, optional Tolerance when determining whether a point is inside the hull. Due to numerical floating point errors, a tolerance of 0 can result in some points erroneously being classified as being outside the hull. include_borders: bool, optional If ``False``, vertices/edges are excluded from the final hull mask. Returns ------- hull : (M, N) array of bool Binary image with pixels in convex hull set to True. References ---------- .. [1] https://blogs.mathworks.com/steve/2011/10/04/binary-image-convex-hull-algorithm-notes/ """ ndim = image.ndim if np.count_nonzero(image) == 0: warn( "Input image is entirely zero, no valid convex hull. " "Returning empty image", UserWarning, ) return np.zeros(image.shape, dtype=bool) # In 2D, we do an optimisation by choosing only pixels that are # the starting or ending pixel of a row or column. This vastly # limits the number of coordinates to examine for the virtual hull. if ndim == 2: coords = possible_hull(np.ascontiguousarray(image, dtype=np.uint8)) else: coords = np.transpose(np.nonzero(image)) if offset_coordinates: # when offsetting, we multiply number of vertices by 2 * ndim. # therefore, we reduce the number of coordinates by using a # convex hull on the original set, before offsetting. try: hull0 = ConvexHull(coords) except QhullError as err: warn( f"Failed to get convex hull image. " f"Returning empty image, see error message below:\n" f"{err}" ) return np.zeros(image.shape, dtype=bool) coords = hull0.points[hull0.vertices] # Add a vertex for the middle of each pixel edge if offset_coordinates: offsets = _offsets_diamond(image.ndim) coords = (coords[:, np.newaxis, :] + offsets).reshape(-1, ndim) # repeated coordinates can *sometimes* cause problems in # scipy.spatial.ConvexHull, so we remove them. coords = unique_rows(coords) # Find the convex hull try: hull = ConvexHull(coords) except QhullError as err: warn( f"Failed to get convex hull image. " f"Returning empty image, see error message below:\n" f"{err}" ) return np.zeros(image.shape, dtype=bool) vertices = hull.points[hull.vertices] # If 2D, use fast Cython function to locate convex hull pixels if ndim == 2: labels = grid_points_in_poly(image.shape, vertices, binarize=False) # If include_borders is True, we include vertices (2) and edge # points (3) in the mask, otherwise only the inside of the hull (1) mask = labels >= 1 if include_borders else labels == 1 else: gridcoords = np.reshape(np.mgrid[tuple(map(slice, image.shape))], (ndim, -1)) coords_in_hull = _check_coords_in_hull(gridcoords, hull.equations, tolerance) mask = np.reshape(coords_in_hull, image.shape) return mask
[文档] def convex_hull_object(image, *, connectivity=2): r"""Compute the convex hull image of individual objects in a binary image. The convex hull is the set of pixels included in the smallest convex polygon that surround all white pixels in the input image. Parameters ---------- image : (M, N) ndarray Binary input image. connectivity : {1, 2}, int, optional Determines the neighbors of each pixel. Adjacent elements within a squared distance of ``connectivity`` from pixel center are considered neighbors.:: 1-connectivity 2-connectivity [ ] [ ] [ ] [ ] | \ | / [ ]--[x]--[ ] [ ]--[x]--[ ] | / | \ [ ] [ ] [ ] [ ] Returns ------- hull : ndarray of bool Binary image with pixels inside convex hull set to ``True``. Notes ----- This function uses ``skimage.morphology.label`` to define unique objects, finds the convex hull of each using ``convex_hull_image``, and combines these regions with logical OR. Be aware the convex hulls of unconnected objects may overlap in the result. If this is suspected, consider using convex_hull_image separately on each object or adjust ``connectivity``. """ if image.ndim > 2: raise ValueError("Input must be a 2D image") if connectivity not in (1, 2): raise ValueError('`connectivity` must be either 1 or 2.') labeled_im = label(image, connectivity=connectivity, background=0) convex_obj = np.zeros(image.shape, dtype=bool) convex_img = np.zeros(image.shape, dtype=bool) for i in range(1, labeled_im.max() + 1): convex_obj = convex_hull_image(labeled_im == i) convex_img = np.logical_or(convex_img, convex_obj) return convex_img