skimage.segmentation._clear_border 源代码

import numpy as np

from ..measure import label


[文档] def clear_border(labels, buffer_size=0, bgval=0, mask=None, *, out=None): """Clear objects connected to the label image border. Parameters ---------- labels : (M[, N[, ..., P]]) array of int or bool Imaging data labels. buffer_size : int, optional The width of the border examined. By default, only objects that touch the outside of the image are removed. bgval : float or int, optional Cleared objects are set to this value. mask : ndarray of bool, same shape as `image`, optional. Image data mask. Objects in labels image overlapping with False pixels of mask will be removed. If defined, the argument buffer_size will be ignored. out : ndarray Array of the same shape as `labels`, into which the output is placed. By default, a new array is created. Returns ------- out : (M[, N[, ..., P]]) array Imaging data labels with cleared borders Examples -------- >>> import numpy as np >>> from skimage.segmentation import clear_border >>> labels = np.array([[0, 0, 0, 0, 0, 0, 0, 1, 0], ... [1, 1, 0, 0, 1, 0, 0, 1, 0], ... [1, 1, 0, 1, 0, 1, 0, 0, 0], ... [0, 0, 0, 1, 1, 1, 1, 0, 0], ... [0, 1, 1, 1, 1, 1, 1, 1, 0], ... [0, 0, 0, 0, 0, 0, 0, 0, 0]]) >>> clear_border(labels) array([[0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 1, 0, 0, 0], [0, 0, 0, 1, 1, 1, 1, 0, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0]]) >>> mask = np.array([[0, 0, 1, 1, 1, 1, 1, 1, 1], ... [0, 0, 1, 1, 1, 1, 1, 1, 1], ... [1, 1, 1, 1, 1, 1, 1, 1, 1], ... [1, 1, 1, 1, 1, 1, 1, 1, 1], ... [1, 1, 1, 1, 1, 1, 1, 1, 1], ... [1, 1, 1, 1, 1, 1, 1, 1, 1]]).astype(bool) >>> clear_border(labels, mask=mask) array([[0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0, 0, 1, 0], [0, 0, 0, 1, 0, 1, 0, 0, 0], [0, 0, 0, 1, 1, 1, 1, 0, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0]]) """ if any(buffer_size >= s for s in labels.shape) and mask is None: # ignore buffer_size if mask raise ValueError("buffer size may not be greater than labels size") if out is None: out = labels.copy() if mask is not None: err_msg = ( f'labels and mask should have the same shape but ' f'are {out.shape} and {mask.shape}' ) if out.shape != mask.shape: raise (ValueError, err_msg) if mask.dtype != bool: raise TypeError("mask should be of type bool.") borders = ~mask else: # create borders with buffer_size borders = np.zeros_like(out, dtype=bool) ext = buffer_size + 1 slstart = slice(ext) slend = slice(-ext, None) slices = [slice(None) for _ in out.shape] for d in range(out.ndim): slices[d] = slstart borders[tuple(slices)] = True slices[d] = slend borders[tuple(slices)] = True slices[d] = slice(None) # Re-label, in case we are dealing with a binary out # and to get consistent labeling labels, number = label(out, background=0, return_num=True) # determine all objects that are connected to borders borders_indices = np.unique(labels[borders]) indices = np.arange(number + 1) # mask all label indices that are connected to borders label_mask = np.isin(indices, borders_indices) # create mask for pixels to clear mask = label_mask[labels.reshape(-1)].reshape(labels.shape) # clear border pixels out[mask] = bgval return out