skimage.util._map_array 源代码

import numpy as np


[文档] def map_array(input_arr, input_vals, output_vals, out=None): """Map values from input array from input_vals to output_vals. Parameters ---------- input_arr : array of int, shape (M[, ...]) The input label image. input_vals : array of int, shape (K,) The values to map from. output_vals : array, shape (K,) The values to map to. out: array, same shape as `input_arr` The output array. Will be created if not provided. It should have the same dtype as `output_vals`. Returns ------- out : array, same shape as `input_arr` The array of mapped values. Notes ----- If `input_arr` contains values that aren't covered by `input_vals`, they are set to 0. Examples -------- >>> import numpy as np >>> import skimage as ski >>> ski.util.map_array( ... input_arr=np.array([[0, 2, 2, 0], [3, 4, 5, 0]]), ... input_vals=np.array([1, 2, 3, 4, 6]), ... output_vals=np.array([6, 7, 8, 9, 10]), ... ) array([[0, 7, 7, 0], [8, 9, 0, 0]]) """ from ._remap import _map_array if not np.issubdtype(input_arr.dtype, np.integer): raise TypeError('The dtype of an array to be remapped should be integer.') # We ravel the input array for simplicity of iteration in Cython: orig_shape = input_arr.shape # NumPy docs for `np.ravel()` says: # "When a view is desired in as many cases as possible, # arr.reshape(-1) may be preferable." input_arr = input_arr.reshape(-1) if out is None: out = np.empty(orig_shape, dtype=output_vals.dtype) elif out.shape != orig_shape: raise ValueError( 'If out array is provided, it should have the same shape as ' f'the input array. Input array has shape {orig_shape}, provided ' f'output array has shape {out.shape}.' ) try: out_view = out.view() out_view.shape = (-1,) # no-copy reshape/ravel except AttributeError: # if out strides are not compatible with 0-copy raise ValueError( 'If out array is provided, it should be either contiguous ' f'or 1-dimensional. Got array with shape {out.shape} and ' f'strides {out.strides}.' ) # ensure all arrays have matching types before sending to Cython input_vals = input_vals.astype(input_arr.dtype, copy=False) output_vals = output_vals.astype(out.dtype, copy=False) _map_array(input_arr, out_view, input_vals, output_vals) return out
class ArrayMap: """Class designed to mimic mapping by NumPy array indexing. This class is designed to replicate the use of NumPy arrays for mapping values with indexing: >>> values = np.array([0.25, 0.5, 1.0]) >>> indices = np.array([[0, 0, 1], [2, 2, 1]]) >>> values[indices] array([[0.25, 0.25, 0.5 ], [1. , 1. , 0.5 ]]) The issue with this indexing is that you need a very large ``values`` array if the values in the ``indices`` array are large. >>> values = np.array([0.25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0]) >>> indices = np.array([[0, 0, 10], [0, 10, 10]]) >>> values[indices] array([[0.25, 0.25, 1. ], [0.25, 1. , 1. ]]) Using this class, the approach is similar, but there is no need to create a large values array: >>> in_indices = np.array([0, 10]) >>> out_values = np.array([0.25, 1.0]) >>> values = ArrayMap(in_indices, out_values) >>> values ArrayMap(array([ 0, 10]), array([0.25, 1. ])) >>> print(values) ArrayMap: 0 → 0.25 10 → 1.0 >>> indices = np.array([[0, 0, 10], [0, 10, 10]]) >>> values[indices] array([[0.25, 0.25, 1. ], [0.25, 1. , 1. ]]) Parameters ---------- in_values : array of int, shape (K,) The source values from which to map. out_values : array, shape (K,) The destination values from which to map. """ def __init__(self, in_values, out_values): self.in_values = in_values self.out_values = out_values self._max_str_lines = 4 self._array = None def __len__(self): """Return one more than the maximum label value being remapped.""" return np.max(self.in_values) + 1 def __array__(self, dtype=None): """Return an array that behaves like the arraymap when indexed. This array can be very large: it is the size of the largest value in the ``in_vals`` array, plus one. """ if dtype is None: dtype = self.out_values.dtype output = np.zeros(np.max(self.in_values) + 1, dtype=dtype) output[self.in_values] = self.out_values return output @property def dtype(self): return self.out_values.dtype def __repr__(self): return f'ArrayMap({repr(self.in_values)}, {repr(self.out_values)})' def __str__(self): if len(self.in_values) <= self._max_str_lines + 1: rows = range(len(self.in_values)) string = '\n'.join( ['ArrayMap:'] + [f' {self.in_values[i]}{self.out_values[i]}' for i in rows] ) else: rows0 = list(range(0, self._max_str_lines // 2)) rows1 = list(range(-self._max_str_lines // 2, 0)) string = '\n'.join( ['ArrayMap:'] + [f' {self.in_values[i]}{self.out_values[i]}' for i in rows0] + [' ...'] + [f' {self.in_values[i]}{self.out_values[i]}' for i in rows1] ) return string def __call__(self, arr): return self.__getitem__(arr) def __getitem__(self, index): scalar = np.isscalar(index) if scalar: index = np.array([index]) elif isinstance(index, slice): start = index.start or 0 # treat None or 0 the same way stop = index.stop if index.stop is not None else len(self) step = index.step index = np.arange(start, stop, step) if index.dtype == bool: index = np.flatnonzero(index) out = map_array( index, self.in_values.astype(index.dtype, copy=False), self.out_values, ) if scalar: out = out[0] return out def __setitem__(self, indices, values): if self._array is None: self._array = self.__array__() self._array[indices] = values self.in_values = np.flatnonzero(self._array) self.out_values = self._array[self.in_values]