skimage.util.compare 源代码

import functools
import warnings
from itertools import product

import numpy as np

from .dtype import img_as_float


def _rename_image_params(func):
    wm_images = (
        "Since version 0.24, the two input images are named `image0` and "
        "`image1` (instead of `image1` and `image2`, respectively). Please use "
        "`image0, image1` to avoid this warning for now, and avoid an error "
        "from version 0.26 onwards."
    )

    wm_method = (
        "Starting in version 0.24, all arguments following `image0, image1` "
        "(including `method`) will be keyword-only. Please pass `method=` "
        "in the function call to avoid this warning for now, and avoid an error "
        "from version 0.26 onwards."
    )

    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        # Turn all args into kwargs
        for i, (value, param) in enumerate(
            zip(args, ["image0", "image1", "method", "n_tiles"])
        ):
            if i >= 2:
                warnings.warn(wm_method, category=FutureWarning, stacklevel=2)
            if param in kwargs:
                raise ValueError(
                    f"{param} passed both as positional and keyword argument."
                )
            else:
                kwargs[param] = value
        args = tuple()

        # Account for `image2` if given
        if "image2" in kwargs.keys():
            warnings.warn(wm_images, category=FutureWarning, stacklevel=2)

            # Safely move `image2` to `image1` if that's empty
            if "image1" in kwargs.keys():
                # Safely move `image1` to `image0`
                if "image0" in kwargs.keys():
                    raise ValueError(
                        "Three input images given; please use only `image0` "
                        "and `image1`."
                    )
                kwargs["image0"] = kwargs.pop("image1")
            kwargs["image1"] = kwargs.pop("image2")

        return func(*args, **kwargs)

    return wrapper


[文档] @_rename_image_params def compare_images(image0, image1, *, method='diff', n_tiles=(8, 8)): """ Return an image showing the differences between two images. .. versionadded:: 0.16 Parameters ---------- image0, image1 : ndarray, shape (M, N) Images to process, must be of the same shape. .. versionchanged:: 0.24 `image1` and `image2` were renamed into `image0` and `image1` respectively. method : string, optional Method used for the comparison. Valid values are {'diff', 'blend', 'checkerboard'}. Details are provided in the note section. .. versionchanged:: 0.24 This parameter and following ones are keyword-only. n_tiles : tuple, optional Used only for the `checkerboard` method. Specifies the number of tiles (row, column) to divide the image. Returns ------- comparison : ndarray, shape (M, N) Image showing the differences. Notes ----- ``'diff'`` computes the absolute difference between the two images. ``'blend'`` computes the mean value. ``'checkerboard'`` makes tiles of dimension `n_tiles` that display alternatively the first and the second image. Note that images must be 2-dimensional to be compared with the checkerboard method. """ if image1.shape != image0.shape: raise ValueError('Images must have the same shape.') img1 = img_as_float(image0) img2 = img_as_float(image1) if method == 'diff': comparison = np.abs(img2 - img1) elif method == 'blend': comparison = 0.5 * (img2 + img1) elif method == 'checkerboard': if img1.ndim != 2: raise ValueError( 'Images must be 2-dimensional to be compared with the ' 'checkerboard method.' ) shapex, shapey = img1.shape mask = np.full((shapex, shapey), False) stepx = int(shapex / n_tiles[0]) stepy = int(shapey / n_tiles[1]) for i, j in product(range(n_tiles[0]), range(n_tiles[1])): if (i + j) % 2 == 0: mask[i * stepx : (i + 1) * stepx, j * stepy : (j + 1) * stepy] = True comparison = np.zeros_like(img1) comparison[mask] = img1[mask] comparison[~mask] = img2[~mask] else: raise ValueError( 'Wrong value for `method`. ' 'Must be either "diff", "blend" or "checkerboard".' ) return comparison