__all__ = ['random_noise']
import numpy as np
from .dtype import img_as_float
def _bernoulli(p, shape, *, rng):
"""
Bernoulli trials at a given probability of a given size.
This function is meant as a lower-memory alternative to calls such as
`np.random.choice([True, False], size=image.shape, p=[p, 1-p])`.
While `np.random.choice` can handle many classes, for the 2-class case
(Bernoulli trials), this function is much more efficient.
Parameters
----------
p : float
The probability that any given trial returns `True`.
shape : int or tuple of ints
The shape of the ndarray to return.
rng : `numpy.random.Generator`
``Generator`` instance, typically obtained via `np.random.default_rng()`.
Returns
-------
out : ndarray[bool]
The results of Bernoulli trials in the given `size` where success
occurs with probability `p`.
"""
if p == 0:
return np.zeros(shape, dtype=bool)
if p == 1:
return np.ones(shape, dtype=bool)
return rng.random(shape) <= p
[文档]
def random_noise(image, mode='gaussian', rng=None, clip=True, **kwargs):
"""
Function to add random noise of various types to a floating-point image.
Parameters
----------
image : ndarray
Input image data. Will be converted to float.
mode : str, optional
One of the following strings, selecting the type of noise to add:
'gaussian' (default)
Gaussian-distributed additive noise.
'localvar'
Gaussian-distributed additive noise, with specified local variance
at each point of `image`.
'poisson'
Poisson-distributed noise generated from the data.
'salt'
Replaces random pixels with 1.
'pepper'
Replaces random pixels with 0 (for unsigned images) or -1 (for
signed images).
's&p'
Replaces random pixels with either 1 or `low_val`, where `low_val`
is 0 for unsigned images or -1 for signed images.
'speckle'
Multiplicative noise using ``out = image + n * image``, where ``n``
is Gaussian noise with specified mean & variance.
rng : {`numpy.random.Generator`, int}, optional
Pseudo-random number generator.
By default, a PCG64 generator is used (see :func:`numpy.random.default_rng`).
If `rng` is an int, it is used to seed the generator.
clip : bool, optional
If True (default), the output will be clipped after noise applied
for modes `'speckle'`, `'poisson'`, and `'gaussian'`. This is
needed to maintain the proper image data range. If False, clipping
is not applied, and the output may extend beyond the range [-1, 1].
mean : float, optional
Mean of random distribution. Used in 'gaussian' and 'speckle'.
Default : 0.
var : float, optional
Variance of random distribution. Used in 'gaussian' and 'speckle'.
Note: variance = (standard deviation) ** 2. Default : 0.01
local_vars : ndarray, optional
Array of positive floats, same shape as `image`, defining the local
variance at every image point. Used in 'localvar'.
amount : float, optional
Proportion of image pixels to replace with noise on range [0, 1].
Used in 'salt', 'pepper', and 'salt & pepper'. Default : 0.05
salt_vs_pepper : float, optional
Proportion of salt vs. pepper noise for 's&p' on range [0, 1].
Higher values represent more salt. Default : 0.5 (equal amounts)
Returns
-------
out : ndarray
Output floating-point image data on range [0, 1] or [-1, 1] if the
input `image` was unsigned or signed, respectively.
Notes
-----
Speckle, Poisson, Localvar, and Gaussian noise may generate noise outside
the valid image range. The default is to clip (not alias) these values,
but they may be preserved by setting `clip=False`. Note that in this case
the output may contain values outside the ranges [0, 1] or [-1, 1].
Use this option with care.
Because of the prevalence of exclusively positive floating-point images in
intermediate calculations, it is not possible to intuit if an input is
signed based on dtype alone. Instead, negative values are explicitly
searched for. Only if found does this function assume signed input.
Unexpected results only occur in rare, poorly exposes cases (e.g. if all
values are above 50 percent gray in a signed `image`). In this event,
manually scaling the input to the positive domain will solve the problem.
The Poisson distribution is only defined for positive integers. To apply
this noise type, the number of unique values in the image is found and
the next round power of two is used to scale up the floating-point result,
after which it is scaled back down to the floating-point image range.
To generate Poisson noise against a signed image, the signed image is
temporarily converted to an unsigned image in the floating point domain,
Poisson noise is generated, then it is returned to the original range.
"""
mode = mode.lower()
# Detect if a signed image was input
if image.min() < 0:
low_clip = -1.0
else:
low_clip = 0.0
image = img_as_float(image)
rng = np.random.default_rng(rng)
allowedtypes = {
'gaussian': 'gaussian_values',
'localvar': 'localvar_values',
'poisson': 'poisson_values',
'salt': 'sp_values',
'pepper': 'sp_values',
's&p': 's&p_values',
'speckle': 'gaussian_values',
}
kwdefaults = {
'mean': 0.0,
'var': 0.01,
'amount': 0.05,
'salt_vs_pepper': 0.5,
'local_vars': np.zeros_like(image) + 0.01,
}
allowedkwargs = {
'gaussian_values': ['mean', 'var'],
'localvar_values': ['local_vars'],
'sp_values': ['amount'],
's&p_values': ['amount', 'salt_vs_pepper'],
'poisson_values': [],
}
for key in kwargs:
if key not in allowedkwargs[allowedtypes[mode]]:
raise ValueError(
f"{key} keyword not in allowed keywords "
f"{allowedkwargs[allowedtypes[mode]]}"
)
# Set kwarg defaults
for kw in allowedkwargs[allowedtypes[mode]]:
kwargs.setdefault(kw, kwdefaults[kw])
if mode == 'gaussian':
noise = rng.normal(kwargs['mean'], kwargs['var'] ** 0.5, image.shape)
out = image + noise
elif mode == 'localvar':
# Ensure local variance input is correct
if (kwargs['local_vars'] <= 0).any():
raise ValueError('All values of `local_vars` must be > 0.')
# Safe shortcut usage broadcasts kwargs['local_vars'] as a ufunc
out = image + rng.normal(0, kwargs['local_vars'] ** 0.5)
elif mode == 'poisson':
# Determine unique values in image & calculate the next power of two
vals = len(np.unique(image))
vals = 2 ** np.ceil(np.log2(vals))
# Ensure image is exclusively positive
if low_clip == -1.0:
old_max = image.max()
image = (image + 1.0) / (old_max + 1.0)
# Generating noise for each unique value in image.
out = rng.poisson(image * vals) / float(vals)
# Return image to original range if input was signed
if low_clip == -1.0:
out = out * (old_max + 1.0) - 1.0
elif mode == 'salt':
# Re-call function with mode='s&p' and p=1 (all salt noise)
out = random_noise(
image, mode='s&p', rng=rng, amount=kwargs['amount'], salt_vs_pepper=1.0
)
elif mode == 'pepper':
# Re-call function with mode='s&p' and p=1 (all pepper noise)
out = random_noise(
image, mode='s&p', rng=rng, amount=kwargs['amount'], salt_vs_pepper=0.0
)
elif mode == 's&p':
out = image.copy()
p = kwargs['amount']
q = kwargs['salt_vs_pepper']
flipped = _bernoulli(p, image.shape, rng=rng)
salted = _bernoulli(q, image.shape, rng=rng)
peppered = ~salted
out[flipped & salted] = 1
out[flipped & peppered] = low_clip
elif mode == 'speckle':
noise = rng.normal(kwargs['mean'], kwargs['var'] ** 0.5, image.shape)
out = image + image * noise
# Clip back to original range, if necessary
if clip:
out = np.clip(out, low_clip, 1.0)
return out