期望的度序列#

根据给定的度序列生成随机图。

Degree histogram
degree (#nodes) ****
 0 ( 0)
 1 ( 0)
 2 ( 0)
 3 ( 0)
 4 ( 0)
 5 ( 0)
 6 ( 0)
 7 ( 0)
 8 ( 0)
 9 ( 0)
10 ( 0)
11 ( 0)
12 ( 0)
13 ( 0)
14 ( 0)
15 ( 0)
16 ( 0)
17 ( 0)
18 ( 0)
19 ( 0)
20 ( 0)
21 ( 0)
22 ( 0)
23 ( 0)
24 ( 0)
25 ( 0)
26 ( 0)
27 ( 0)
28 ( 0)
29 ( 0)
30 ( 0)
31 ( 0)
32 ( 1) *
33 ( 0)
34 ( 3) ***
35 ( 4) ****
36 ( 1) *
37 ( 5) *****
38 ( 7) *******
39 (11) ***********
40 ( 9) *********
41 (18) ******************
42 ( 8) ********
43 (17) *****************
44 (18) ******************
45 (20) ********************
46 (21) *********************
47 (29) *****************************
48 (35) ***********************************
49 (29) *****************************
50 (30) ******************************
51 (36) ************************************
52 (22) **********************
53 (26) **************************
54 (25) *************************
55 (27) ***************************
56 (17) *****************
57 (19) *******************
58 (13) *************
59 (14) **************
60 ( 8) ********
61 ( 6) ******
62 ( 7) *******
63 ( 3) ***
64 ( 3) ***
65 ( 3) ***
66 ( 0)
67 ( 2) **
68 ( 2) **
69 ( 1) *

import networkx as nx

# 生成一个包含500个节点、期望度数为50的随机图
n = 500  # n个节点
p = 0.1
w = [p * n for i in range(n)]  # w = p*n 对于所有节点
G = nx.expected_degree_graph(w)  # 配置模型
print("Degree histogram")
print("degree (#nodes) ****")
dh = nx.degree_histogram(G)
for i, d in enumerate(dh):
    print(f"{i:2} ({d:2}) {'*'*d}")

Total running time of the script: (0 minutes 0.013 seconds)

Gallery generated by Sphinx-Gallery