Note
Go to the end to download the full example code.
单词/阶梯图#
生成一个包含数据文件 words_dat.txt.gz
中 5757 个 5 字母单词的无向图。两个单词通过一条边连接,如果它们只有一个字母不同,这将产生 14,135 条边。这个例子在以下文献的第 1.1 节中描述:
唐纳德·E·克努特,“斯坦福图基:组合计算的平台”,ACM 出版社,纽约,1993 年。 http://www-cs-faculty.stanford.edu/~knuth/sgb.html
数据文件可以在以下位置找到:
Loaded words_dat.txt containing 5757 five-letter English words.
Two words are connected if they differ in one letter.
Graph named 'words' with 5757 nodes and 14135 edges
853 connected components
Shortest path between chaos and order is
chaos
choos
shoos
shoes
shoed
shred
sired
sided
aided
added
adder
odder
order
Shortest path between nodes and graph is
nodes
lodes
lores
lords
loads
goads
grads
grade
grape
graph
Shortest path between pound and marks is
None
import gzip
from string import ascii_lowercase as lowercase
import matplotlib.pyplot as plt
import networkx as nx
def generate_graph(words):
G = nx.Graph(name="words")
lookup = {c: lowercase.index(c) for c in lowercase}
def edit_distance_one(word):
for i in range(len(word)):
left, c, right = word[0:i], word[i], word[i + 1 :]
j = lookup[c] # lowercase.index(c) 的索引位置
for cc in lowercase[j + 1 :]:
yield left + cc + right
candgen = (
(word, cand)
for word in sorted(words)
for cand in edit_distance_one(word)
if cand in words
)
G.add_nodes_from(words)
for word, cand in candgen:
G.add_edge(word, cand)
return G
def words_graph():
"""返回来自斯坦福图库的单词示例图"""
fh = gzip.open("words_dat.txt.gz", "r")
words = set()
for line in fh.readlines():
line = line.decode()
if line.startswith("*"):
continue
w = str(line[0:5])
words.add(w)
return generate_graph(words)
G = words_graph()
print("Loaded words_dat.txt containing 5757 five-letter English words.")
print("Two words are connected if they differ in one letter.")
print(G)
print(f"{nx.number_connected_components(G)} connected components")
for source, target in [("chaos", "order"), ("nodes", "graph"), ("pound", "marks")]:
print(f"Shortest path between {source} and {target} is")
try:
shortest_path = nx.shortest_path(G, source, target)
for n in shortest_path:
print(n)
except nx.NetworkXNoPath:
print("None")
# 绘制图的一个子集
boundary = list(nx.node_boundary(G, shortest_path))
G.add_nodes_from(shortest_path, color="red")
G.add_nodes_from(boundary, color="blue")
H = G.subgraph(shortest_path + boundary)
colors = nx.get_node_attributes(H, "color")
options = {"node_size": 1500, "alpha": 0.3, "node_color": colors.values()}
pos = nx.kamada_kawai_layout(H)
nx.draw(H, pos, **options)
nx.draw_networkx_labels(H, pos, font_weight="bold")
plt.show()
Total running time of the script: (0 minutes 0.147 seconds)