scipy.sparse.linalg._isolve.tfqmr 源代码

import numpy as np
from .iterative import _get_atol_rtol
from .utils import make_system


__all__ = ['tfqmr']


[文档] def tfqmr(A, b, x0=None, *, rtol=1e-5, atol=0., maxiter=None, M=None, callback=None, show=False): """ Use Transpose-Free Quasi-Minimal Residual iteration to solve ``Ax = b``. Parameters ---------- A : {sparse matrix, ndarray, LinearOperator} The real or complex N-by-N matrix of the linear system. Alternatively, `A` can be a linear operator which can produce ``Ax`` using, e.g., `scipy.sparse.linalg.LinearOperator`. b : {ndarray} Right hand side of the linear system. Has shape (N,) or (N,1). x0 : {ndarray} Starting guess for the solution. rtol, atol : float, optional Parameters for the convergence test. For convergence, ``norm(b - A @ x) <= max(rtol*norm(b), atol)`` should be satisfied. The default is ``rtol=1e-5``, the default for ``atol`` is ``0.0``. maxiter : int, optional Maximum number of iterations. Iteration will stop after maxiter steps even if the specified tolerance has not been achieved. Default is ``min(10000, ndofs * 10)``, where ``ndofs = A.shape[0]``. M : {sparse matrix, ndarray, LinearOperator} Inverse of the preconditioner of A. M should approximate the inverse of A and be easy to solve for (see Notes). Effective preconditioning dramatically improves the rate of convergence, which implies that fewer iterations are needed to reach a given error tolerance. By default, no preconditioner is used. callback : function, optional User-supplied function to call after each iteration. It is called as `callback(xk)`, where `xk` is the current solution vector. show : bool, optional Specify ``show = True`` to show the convergence, ``show = False`` is to close the output of the convergence. Default is `False`. Returns ------- x : ndarray The converged solution. info : int Provides convergence information: - 0 : successful exit - >0 : convergence to tolerance not achieved, number of iterations - <0 : illegal input or breakdown Notes ----- The Transpose-Free QMR algorithm is derived from the CGS algorithm. However, unlike CGS, the convergence curves for the TFQMR method is smoothed by computing a quasi minimization of the residual norm. The implementation supports left preconditioner, and the "residual norm" to compute in convergence criterion is actually an upper bound on the actual residual norm ``||b - Axk||``. References ---------- .. [1] R. W. Freund, A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems, SIAM J. Sci. Comput., 14(2), 470-482, 1993. .. [2] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edition, SIAM, Philadelphia, 2003. .. [3] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations, number 16 in Frontiers in Applied Mathematics, SIAM, Philadelphia, 1995. Examples -------- >>> import numpy as np >>> from scipy.sparse import csc_matrix >>> from scipy.sparse.linalg import tfqmr >>> A = csc_matrix([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=float) >>> b = np.array([2, 4, -1], dtype=float) >>> x, exitCode = tfqmr(A, b, atol=0.0) >>> print(exitCode) # 0 indicates successful convergence 0 >>> np.allclose(A.dot(x), b) True """ # Check data type dtype = A.dtype if np.issubdtype(dtype, np.int64): dtype = float A = A.astype(dtype) if np.issubdtype(b.dtype, np.int64): b = b.astype(dtype) A, M, x, b, postprocess = make_system(A, M, x0, b) # Check if the R.H.S is a zero vector if np.linalg.norm(b) == 0.: x = b.copy() return (postprocess(x), 0) ndofs = A.shape[0] if maxiter is None: maxiter = min(10000, ndofs * 10) if x0 is None: r = b.copy() else: r = b - A.matvec(x) u = r w = r.copy() # Take rstar as b - Ax0, that is rstar := r = b - Ax0 mathematically rstar = r v = M.matvec(A.matvec(r)) uhat = v d = theta = eta = 0. # at this point we know rstar == r, so rho is always real rho = np.inner(rstar.conjugate(), r).real rhoLast = rho r0norm = np.sqrt(rho) tau = r0norm if r0norm == 0: return (postprocess(x), 0) # we call this to get the right atol and raise errors as necessary atol, _ = _get_atol_rtol('tfqmr', r0norm, atol, rtol) for iter in range(maxiter): even = iter % 2 == 0 if (even): vtrstar = np.inner(rstar.conjugate(), v) # Check breakdown if vtrstar == 0.: return (postprocess(x), -1) alpha = rho / vtrstar uNext = u - alpha * v # [1]-(5.6) w -= alpha * uhat # [1]-(5.8) d = u + (theta**2 / alpha) * eta * d # [1]-(5.5) # [1]-(5.2) theta = np.linalg.norm(w) / tau c = np.sqrt(1. / (1 + theta**2)) tau *= theta * c # Calculate step and direction [1]-(5.4) eta = (c**2) * alpha z = M.matvec(d) x += eta * z if callback is not None: callback(x) # Convergence criterion if tau * np.sqrt(iter+1) < atol: if (show): print("TFQMR: Linear solve converged due to reach TOL " f"iterations {iter+1}") return (postprocess(x), 0) if (not even): # [1]-(5.7) rho = np.inner(rstar.conjugate(), w) beta = rho / rhoLast u = w + beta * u v = beta * uhat + (beta**2) * v uhat = M.matvec(A.matvec(u)) v += uhat else: uhat = M.matvec(A.matvec(uNext)) u = uNext rhoLast = rho if (show): print("TFQMR: Linear solve not converged due to reach MAXIT " f"iterations {iter+1}") return (postprocess(x), maxiter)