备注
转到末尾 以下载完整示例代码。
使用 rmm 与 Dask
import dask
from dask.distributed import Client
from dask_cuda import LocalCUDACluster
from sklearn.datasets import make_classification
import xgboost as xgb
def main(client):
# Optionally force XGBoost to use RMM for all GPU memory allocation, see ./README.md
# xgb.set_config(use_rmm=True)
X, y = make_classification(n_samples=10000, n_informative=5, n_classes=3)
# In pratice one should prefer loading the data with dask collections instead of
# using `from_array`.
X = dask.array.from_array(X)
y = dask.array.from_array(y)
dtrain = xgb.dask.DaskDMatrix(client, X, label=y)
params = {
"max_depth": 8,
"eta": 0.01,
"objective": "multi:softprob",
"num_class": 3,
"tree_method": "hist",
"eval_metric": "merror",
"device": "cuda",
}
output = xgb.dask.train(
client, params, dtrain, num_boost_round=100, evals=[(dtrain, "train")]
)
bst = output["booster"]
history = output["history"]
for i, e in enumerate(history["train"]["merror"]):
print(f"[{i}] train-merror: {e}")
if __name__ == "__main__":
# To use RMM pool allocator with a GPU Dask cluster, just add rmm_pool_size option
# to LocalCUDACluster constructor.
with LocalCUDACluster(rmm_pool_size="2GB") as cluster:
with Client(cluster) as client:
main(client)