XGBoost Python 功能演练
这是使用XGBoost Python包的示例集合。
Demo for using xgboost with sklearn
Demo for obtaining leaf index
This script demonstrate how to access the eval metrics
Demo for gamma regression
Demo for boosting from prediction
通过使用 sklearn 接口访问 xgboost 评估指标的演示
Demo for accessing the xgboost eval metrics by using sklearn interface
Demo for using feature weight to change column sampling
Demo for GLM
Demo for prediction using number of trees
Getting started with XGBoost
Collection of examples for using sklearn interface
Demo for using cross validation
Getting started with categorical data
Experimental support for external memory
Demo for using data iterator with Quantile DMatrix
使用 process_type 进行 prune 和 refresh 的演示
Demo for using process_type with prune and refresh
Demo for prediction using individual trees and model slices
Collection of examples for using xgboost.spark estimator interface
使用 cat_in_the_dat 数据集训练 XGBoost
Train XGBoost with cat_in_the_dat dataset
A demo for multi-output regression
sphx_glr_python_examples_quantile_回归.py
Quantile Regression
Demo for training continuation
Feature engineering pipeline for categorical data
Demo for using and defining callback functions
Demo for creating customized multi-class objective function
Getting started with learning to rank
Demo for defining a custom regression objective and metric