备注
前往结尾 下载完整示例代码。
通过使用 sklearn 接口访问 xgboost 评估指标的演示
import numpy as np
from sklearn.datasets import make_hastie_10_2
import xgboost as xgb
X, y = make_hastie_10_2(n_samples=2000, random_state=42)
# Map labels from {-1, 1} to {0, 1}
labels, y = np.unique(y, return_inverse=True)
X_train, X_test = X[:1600], X[1600:]
y_train, y_test = y[:1600], y[1600:]
param_dist = {"objective": "binary:logistic", "n_estimators": 2}
clf = xgb.XGBModel(
**param_dist,
eval_metric="logloss",
)
# Or you can use: clf = xgb.XGBClassifier(**param_dist)
clf.fit(
X_train,
y_train,
eval_set=[(X_train, y_train), (X_test, y_test)],
verbose=True,
)
# Load evals result by calling the evals_result() function
evals_result = clf.evals_result()
print("Access logloss metric directly from validation_0:")
print(evals_result["validation_0"]["logloss"])
print("")
print("Access metrics through a loop:")
for e_name, e_mtrs in evals_result.items():
print("- {}".format(e_name))
for e_mtr_name, e_mtr_vals in e_mtrs.items():
print(" - {}".format(e_mtr_name))
print(" - {}".format(e_mtr_vals))
print("")
print("Access complete dict:")
print(evals_result)