备注
前往结尾 下载完整示例代码。
使用 xgboost 与 sklearn 的演示
import multiprocessing
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import GridSearchCV
import xgboost as xgb
if __name__ == "__main__":
print("Parallel Parameter optimization")
X, y = fetch_california_housing(return_X_y=True)
# Make sure the number of threads is balanced.
xgb_model = xgb.XGBRegressor(
n_jobs=multiprocessing.cpu_count() // 2, tree_method="hist"
)
clf = GridSearchCV(
xgb_model,
{"max_depth": [2, 4, 6], "n_estimators": [50, 100, 200]},
verbose=1,
n_jobs=2,
)
clf.fit(X, y)
print(clf.best_score_)
print(clf.best_params_)