训练延续的演示

import os
import pickle
import tempfile

from sklearn.datasets import load_breast_cancer

import xgboost


def training_continuation(tmpdir: str, use_pickle: bool) -> None:
    """Basic training continuation."""
    # Train 128 iterations in 1 session
    X, y = load_breast_cancer(return_X_y=True)
    clf = xgboost.XGBClassifier(n_estimators=128, eval_metric="logloss")
    clf.fit(X, y, eval_set=[(X, y)])
    print("Total boosted rounds:", clf.get_booster().num_boosted_rounds())

    # Train 128 iterations in 2 sessions, with the first one runs for 32 iterations and
    # the second one runs for 96 iterations
    clf = xgboost.XGBClassifier(n_estimators=32, eval_metric="logloss")
    clf.fit(X, y, eval_set=[(X, y)])
    assert clf.get_booster().num_boosted_rounds() == 32

    # load back the model, this could be a checkpoint
    if use_pickle:
        path = os.path.join(tmpdir, "model-first-32.pkl")
        with open(path, "wb") as fd:
            pickle.dump(clf, fd)
        with open(path, "rb") as fd:
            loaded = pickle.load(fd)
    else:
        path = os.path.join(tmpdir, "model-first-32.json")
        clf.save_model(path)
        loaded = xgboost.XGBClassifier()
        loaded.load_model(path)

    clf = xgboost.XGBClassifier(n_estimators=128 - 32, eval_metric="logloss")
    clf.fit(X, y, eval_set=[(X, y)], xgb_model=loaded)

    print("Total boosted rounds:", clf.get_booster().num_boosted_rounds())

    assert clf.get_booster().num_boosted_rounds() == 128


def training_continuation_early_stop(tmpdir: str, use_pickle: bool) -> None:
    """Training continuation with early stopping."""
    early_stopping_rounds = 5
    early_stop = xgboost.callback.EarlyStopping(
        rounds=early_stopping_rounds, save_best=True
    )
    n_estimators = 512

    X, y = load_breast_cancer(return_X_y=True)
    clf = xgboost.XGBClassifier(
        n_estimators=n_estimators, eval_metric="logloss", callbacks=[early_stop]
    )
    clf.fit(X, y, eval_set=[(X, y)])
    print("Total boosted rounds:", clf.get_booster().num_boosted_rounds())
    best = clf.best_iteration

    # Train 512 iterations in 2 sessions, with the first one runs for 128 iterations and
    # the second one runs until early stop.
    clf = xgboost.XGBClassifier(
        n_estimators=128, eval_metric="logloss", callbacks=[early_stop]
    )
    # Reinitialize the early stop callback
    early_stop = xgboost.callback.EarlyStopping(
        rounds=early_stopping_rounds, save_best=True
    )
    clf.set_params(callbacks=[early_stop])
    clf.fit(X, y, eval_set=[(X, y)])
    assert clf.get_booster().num_boosted_rounds() == 128

    # load back the model, this could be a checkpoint
    if use_pickle:
        path = os.path.join(tmpdir, "model-first-128.pkl")
        with open(path, "wb") as fd:
            pickle.dump(clf, fd)
        with open(path, "rb") as fd:
            loaded = pickle.load(fd)
    else:
        path = os.path.join(tmpdir, "model-first-128.json")
        clf.save_model(path)
        loaded = xgboost.XGBClassifier()
        loaded.load_model(path)

    early_stop = xgboost.callback.EarlyStopping(
        rounds=early_stopping_rounds, save_best=True
    )
    clf = xgboost.XGBClassifier(
        n_estimators=n_estimators - 128, eval_metric="logloss", callbacks=[early_stop]
    )
    clf.fit(
        X,
        y,
        eval_set=[(X, y)],
        xgb_model=loaded,
    )

    print("Total boosted rounds:", clf.get_booster().num_boosted_rounds())
    assert clf.best_iteration == best


if __name__ == "__main__":
    with tempfile.TemporaryDirectory() as tmpdir:
        training_continuation_early_stop(tmpdir, False)
        training_continuation_early_stop(tmpdir, True)

        training_continuation(tmpdir, True)
        training_continuation(tmpdir, False)

由 Sphinx-Gallery 生成的图库