备注
前往结尾 下载完整示例代码。
分位数回归
Added in version 2.0.0.
该脚本灵感来自于 sklearn 中的这个很棒的示例:https://scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_quantile.html
备注
该功能仅在使用 Python、R 和 C 包时支持。此外,由于算法的限制,可能会出现分位数交叉的情况。
import argparse
from typing import Dict
import numpy as np
from sklearn.model_selection import train_test_split
import xgboost as xgb
def f(x: np.ndarray) -> np.ndarray:
"""The function to predict."""
return x * np.sin(x)
def quantile_loss(args: argparse.Namespace) -> None:
"""Train a quantile regression model."""
rng = np.random.RandomState(1994)
# Generate a synthetic dataset for demo, the generate process is from the sklearn
# example.
X = np.atleast_2d(rng.uniform(0, 10.0, size=1000)).T
expected_y = f(X).ravel()
sigma = 0.5 + X.ravel() / 10.0
noise = rng.lognormal(sigma=sigma) - np.exp(sigma**2.0 / 2.0)
y = expected_y + noise
# Train on 0.05 and 0.95 quantiles. The model is similar to multi-class and
# multi-target models.
alpha = np.array([0.05, 0.5, 0.95])
evals_result: Dict[str, Dict] = {}
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=rng)
# We will be using the `hist` tree method, quantile DMatrix can be used to preserve
# memory (which has nothing to do with quantile regression itself, see its document
# for details).
# Do not use the `exact` tree method for quantile regression, otherwise the
# performance might drop.
Xy = xgb.QuantileDMatrix(X_train, y_train)
# use Xy as a reference
Xy_test = xgb.QuantileDMatrix(X_test, y_test, ref=Xy)
booster = xgb.train(
{
# Use the quantile objective function.
"objective": "reg:quantileerror",
"tree_method": "hist",
"quantile_alpha": alpha,
# Let's try not to overfit.
"learning_rate": 0.04,
"max_depth": 5,
},
Xy,
num_boost_round=32,
early_stopping_rounds=2,
# The evaluation result is a weighted average across multiple quantiles.
evals=[(Xy, "Train"), (Xy_test, "Test")],
evals_result=evals_result,
)
xx = np.atleast_2d(np.linspace(0, 10, 1000)).T
scores = booster.inplace_predict(xx)
# dim 1 is the quantiles
assert scores.shape[0] == xx.shape[0]
assert scores.shape[1] == alpha.shape[0]
y_lower = scores[:, 0] # alpha=0.05
y_med = scores[:, 1] # alpha=0.5, median
y_upper = scores[:, 2] # alpha=0.95
# Train a mse model for comparison
booster = xgb.train(
{
"objective": "reg:squarederror",
"tree_method": "hist",
# Let's try not to overfit.
"learning_rate": 0.04,
"max_depth": 5,
},
Xy,
num_boost_round=32,
early_stopping_rounds=2,
evals=[(Xy, "Train"), (Xy_test, "Test")],
evals_result=evals_result,
)
xx = np.atleast_2d(np.linspace(0, 10, 1000)).T
y_pred = booster.inplace_predict(xx)
if args.plot:
from matplotlib import pyplot as plt
fig = plt.figure(figsize=(10, 10))
plt.plot(xx, f(xx), "g:", linewidth=3, label=r"$f(x) = x\,\sin(x)$")
plt.plot(X_test, y_test, "b.", markersize=10, label="Test observations")
plt.plot(xx, y_med, "r-", label="Predicted median")
plt.plot(xx, y_pred, "m-", label="Predicted mean")
plt.plot(xx, y_upper, "k-")
plt.plot(xx, y_lower, "k-")
plt.fill_between(
xx.ravel(), y_lower, y_upper, alpha=0.4, label="Predicted 90% interval"
)
plt.xlabel("$x$")
plt.ylabel("$f(x)$")
plt.ylim(-10, 25)
plt.legend(loc="upper left")
plt.show()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--plot",
action="store_true",
help="Specify it to enable plotting the outputs.",
)
args = parser.parse_args()
quantile_loss(args)