创建自定义多类目标函数的演示

此演示仅适用于 XGBoost 1.0.0 之后的版本(不包括 1.0.0),因为在该版本之前,XGBoost 会为多类目标函数返回转换后的预测。更多详情请参见注释。

详情教程和笔记请参见 自定义目标和评估指标

import argparse

import numpy as np
from matplotlib import pyplot as plt

import xgboost as xgb

np.random.seed(1994)

kRows = 100
kCols = 10
kClasses = 4                    # number of classes

kRounds = 10                    # number of boosting rounds.

# Generate some random data for demo.
X = np.random.randn(kRows, kCols)
y = np.random.randint(0, 4, size=kRows)

m = xgb.DMatrix(X, y)


def softmax(x):
    '''Softmax function with x as input vector.'''
    e = np.exp(x)
    return e / np.sum(e)


def softprob_obj(predt: np.ndarray, data: xgb.DMatrix):
    '''Loss function.  Computing the gradient and approximated hessian (diagonal).
    Reimplements the `multi:softprob` inside XGBoost.

    '''
    labels = data.get_label()
    if data.get_weight().size == 0:
        # Use 1 as weight if we don't have custom weight.
        weights = np.ones((kRows, 1), dtype=float)
    else:
        weights = data.get_weight()

    # The prediction is of shape (rows, classes), each element in a row
    # represents a raw prediction (leaf weight, hasn't gone through softmax
    # yet).  In XGBoost 1.0.0, the prediction is transformed by a softmax
    # function, fixed in later versions.
    assert predt.shape == (kRows, kClasses)

    grad = np.zeros((kRows, kClasses), dtype=float)
    hess = np.zeros((kRows, kClasses), dtype=float)

    eps = 1e-6

    # compute the gradient and hessian, slow iterations in Python, only
    # suitable for demo.  Also the one in native XGBoost core is more robust to
    # numeric overflow as we don't do anything to mitigate the `exp` in
    # `softmax` here.
    for r in range(predt.shape[0]):
        target = labels[r]
        p = softmax(predt[r, :])
        for c in range(predt.shape[1]):
            assert target >= 0 or target <= kClasses
            g = p[c] - 1.0 if c == target else p[c]
            g = g * weights[r]
            h = max((2.0 * p[c] * (1.0 - p[c]) * weights[r]).item(), eps)
            grad[r, c] = g
            hess[r, c] = h

    # After 2.1.0, pass the gradient as it is.
    return grad, hess


def predict(booster: xgb.Booster, X):
    '''A customized prediction function that converts raw prediction to
    target class.

    '''
    # Output margin means we want to obtain the raw prediction obtained from
    # tree leaf weight.
    predt = booster.predict(X, output_margin=True)
    out = np.zeros(kRows)
    for r in range(predt.shape[0]):
        # the class with maximum prob (not strictly prob as it haven't gone
        # through softmax yet so it doesn't sum to 1, but result is the same
        # for argmax).
        i = np.argmax(predt[r])
        out[r] = i
    return out


def merror(predt: np.ndarray, dtrain: xgb.DMatrix):
    y = dtrain.get_label()
    # Like custom objective, the predt is untransformed leaf weight when custom objective
    # is provided.

    # With the use of `custom_metric` parameter in train function, custom metric receives
    # raw input only when custom objective is also being used.  Otherwise custom metric
    # will receive transformed prediction.
    assert predt.shape == (kRows, kClasses)
    out = np.zeros(kRows)
    for r in range(predt.shape[0]):
        i = np.argmax(predt[r])
        out[r] = i

    assert y.shape == out.shape

    errors = np.zeros(kRows)
    errors[y != out] = 1.0
    return 'PyMError', np.sum(errors) / kRows


def plot_history(custom_results, native_results):
    fig, axs = plt.subplots(2, 1)
    ax0 = axs[0]
    ax1 = axs[1]

    pymerror = custom_results['train']['PyMError']
    merror = native_results['train']['merror']

    x = np.arange(0, kRounds, 1)
    ax0.plot(x, pymerror, label='Custom objective')
    ax0.legend()
    ax1.plot(x, merror, label='multi:softmax')
    ax1.legend()

    plt.show()


def main(args):
    custom_results = {}
    # Use our custom objective function
    booster_custom = xgb.train({'num_class': kClasses,
                                'disable_default_eval_metric': True},
                               m,
                               num_boost_round=kRounds,
                               obj=softprob_obj,
                               custom_metric=merror,
                               evals_result=custom_results,
                               evals=[(m, 'train')])

    predt_custom = predict(booster_custom, m)

    native_results = {}
    # Use the same objective function defined in XGBoost.
    booster_native = xgb.train({'num_class': kClasses,
                                "objective": "multi:softmax",
                                'eval_metric': 'merror'},
                               m,
                               num_boost_round=kRounds,
                               evals_result=native_results,
                               evals=[(m, 'train')])
    predt_native = booster_native.predict(m)

    # We are reimplementing the loss function in XGBoost, so it should
    # be the same for normal cases.
    assert np.all(predt_custom == predt_native)
    np.testing.assert_allclose(custom_results['train']['PyMError'],
                               native_results['train']['merror'])

    if args.plot != 0:
        plot_history(custom_results, native_results)


if __name__ == '__main__':
    parser = argparse.ArgumentParser(
        description='Arguments for custom softmax objective function demo.')
    parser.add_argument(
        '--plot',
        type=int,
        default=1,
        help='Set to 0 to disable plotting the evaluation history.')
    args = parser.parse_args()
    main(args)

由 Sphinx-Gallery 生成的图库