InfinispanVS#

class langchain_community.vectorstores.infinispanvs.InfinispanVS(embedding: Embeddings | None = None, ids: List[str] | None = None, **kwargs: Any)[source]#

Infinispan 向量存储接口。

这个类公开了将Infinispan作为VectorStore展示的方法。它依赖于Infinispan类(如下),该类负责与服务器的REST接口交互。

示例

… code-block:: python

从langchain_community.vectorstores导入InfinispanVS 从mymodels导入RGBEmbeddings … vectorDb = InfinispanVS.from_documents(docs,

embedding=RGBEmbeddings(), output_fields=[“texture”, “color”], lambda_key=lambda text,meta: str(meta[“_key”]), lambda_content=lambda item: item[“color”])

如果需要在进行存储填充之前进行初步设置,则可以创建一个空的 InfinispanVS 实例

… code-block:: python

从langchain_community.vectorstores导入InfinispanVS 从mymodels导入RGBEmbeddings … ispnVS = InfinispanVS() # 在这里配置Infinispan # 即创建缓存和模式

# 然后填充存储 vectorDb = InfinispanVS.from_documents(docs,

embedding=RGBEmbeddings(), output_fields: [“texture”, “color”], lambda_key: lambda text,meta: str(meta[“_key”]), lambda_content: lambda item: item[“color”])

Parameters:
  • cache_name (str) – 嵌入缓存名称。默认值为“vector”

  • entity_name (str) – 嵌入的Protobuf实体名称。默认为“vector”

  • text_field (str) – 文本的Protobuf字段名称。默认为“text”

  • vector_field (str) – 向量的Protobuf字段名称。默认为“vector”

  • lambda_content (lambda) – 返回项目内容部分的Lambda函数。默认返回text_field

  • lambda_metadata (lambda) – Lambda 返回项目的元数据部分。默认返回除 text_field、vector_field、_type 之外的字段。

  • output_fields (List[str]) – 要从项目中返回的字段列表,如果为None则返回所有字段。 默认值为None

  • kwargs (Any) – 传递给 Infinispan 的其余参数。请参阅文档

  • embedding (可选[Embeddings])

  • ids (可选[列表[字符串]])

属性

embeddings

如果可用,访问查询嵌入对象。

方法

__init__([embedding, ids])

aadd_documents(documents, **kwargs)

异步运行更多文档通过嵌入并添加到向量存储中。

aadd_texts(texts[, metadatas, ids])

异步运行更多文本通过嵌入并添加到向量存储中。

add_documents(documents, **kwargs)

在向量存储中添加或更新文档。

add_texts(texts[, metadatas, last_vector])

通过嵌入运行更多文本并将其添加到向量存储中。

adelete([ids])

异步删除通过向量ID或其他条件。

afrom_documents(documents, embedding, **kwargs)

异步返回从文档和嵌入初始化的VectorStore。

afrom_texts(texts, embedding[, metadatas, ids])

异步返回从文本和嵌入初始化的VectorStore。

aget_by_ids(ids, /)

通过ID异步获取文档。

amax_marginal_relevance_search(query[, k, ...])

异步返回使用最大边际相关性选择的文档。

amax_marginal_relevance_search_by_vector(...)

异步返回使用最大边际相关性选择的文档。

as_retriever(**kwargs)

返回从此VectorStore初始化的VectorStoreRetriever。

asearch(query, search_type, **kwargs)

异步返回与查询最相似的文档,使用指定的搜索类型。

asimilarity_search(query[, k])

异步返回与查询最相似的文档。

asimilarity_search_by_vector(embedding[, k])

异步返回与嵌入向量最相似的文档。

asimilarity_search_with_relevance_scores(query)

异步返回文档和相关分数,范围在[0, 1]之间。

asimilarity_search_with_score(*args, **kwargs)

异步运行带距离的相似性搜索。

cache_clear()

清除向量数据库的缓存 :returns: 包含操作结果的HTTP响应

cache_create([config])

为向量数据库创建缓存 :param config: 缓存的配置。

cache_delete()

删除向量数据库的缓存 :returns: 包含操作结果的HTTP响应

cache_exists()

检查缓存是否存在 :returns: 如果存在则返回 true

cache_index_clear()

清除向量数据库的索引 :returns: 包含操作结果的http响应

cache_index_reindex()

重建向量数据库的索引 :返回: 包含操作结果的HTTP响应

config_clear()

configure(metadata, dimension)

delete([ids])

通过向量ID或其他条件删除。

from_documents(documents, embedding, **kwargs)

返回从文档和嵌入初始化的VectorStore。

from_texts(texts, embedding[, metadatas, ...])

返回从文本和嵌入初始化的VectorStore。

get_by_ids(ids, /)

通过ID获取文档。

max_marginal_relevance_search(query[, k, ...])

返回使用最大边际相关性选择的文档。

max_marginal_relevance_search_by_vector(...)

返回使用最大边际相关性选择的文档。

schema_builder(templ, dimension)

schema_create(proto)

部署向量数据库的模式 :param proto: protobuf 模式 :type proto: str

schema_delete()

删除向量数据库的模式 :returns: 包含操作结果的HTTP响应

search(query, search_type, **kwargs)

使用指定的搜索类型返回与查询最相似的文档。

similarity_search(query[, k])

返回与查询最相似的文档。

similarity_search_by_vector(embedding[, k])

返回与嵌入向量最相似的文档。

similarity_search_with_relevance_scores(query)

返回文档和相关度分数,范围在[0, 1]之间。

similarity_search_with_score(query[, k])

对查询字符串执行搜索并返回带分数的结果。

similarity_search_with_score_by_vector(embedding)

返回与嵌入向量最相似的文档。

__init__(embedding: Embeddings | None = None, ids: List[str] | None = None, **kwargs: Any)[源代码]#
Parameters:
  • cache_name (str) – 嵌入缓存名称。默认值为“vector”

  • entity_name (str) – 嵌入的Protobuf实体名称。默认为“vector”

  • text_field (str) – 文本的Protobuf字段名称。默认为“text”

  • vector_field (str) – 向量的Protobuf字段名称。默认为“vector”

  • lambda_content (lambda) – 返回项目内容部分的Lambda函数。默认返回text_field

  • lambda_metadata (lambda) – Lambda 返回项目的元数据部分。默认返回除 text_field、vector_field、_type 之外的字段。

  • output_fields (List[str]) – 要从项目中返回的字段列表,如果为None则返回所有字段。 默认值为None

  • kwargs (Any) – 传递给 Infinispan 的其余参数。请参阅文档

  • embedding (Embeddings | None)

  • ids (列表[字符串] | )

async aadd_documents(documents: list[Document], **kwargs: Any) list[str]#

通过嵌入异步运行更多文档并将其添加到向量存储中。

Parameters:
  • documents (list[Document]) – 要添加到向量存储中的文档。

  • kwargs (Any) – 额外的关键字参数。

Returns:

已添加文本的ID列表。

Raises:

ValueError – 如果ID的数量与文档的数量不匹配。

Return type:

列表[字符串]

async aadd_texts(texts: Iterable[str], metadatas: list[dict] | None = None, *, ids: list[str] | None = None, **kwargs: Any) list[str]#

异步运行更多文本通过嵌入并添加到向量存储中。

Parameters:
  • texts (Iterable[str]) – 要添加到向量存储中的字符串的可迭代对象。

  • metadatas (list[dict] | None) – 可选的与文本关联的元数据列表。默认值为 None。

  • ids (list[str] | None) – 可选的列表

  • **kwargs (Any) – 向量存储特定参数。

Returns:

将文本添加到向量存储中后的ID列表。

Raises:
  • ValueError – 如果元数据的数量与文本的数量不匹配。

  • ValueError – 如果id的数量与文本的数量不匹配。

Return type:

列表[字符串]

add_documents(documents: list[Document], **kwargs: Any) list[str]#

在向量存储中添加或更新文档。

Parameters:
  • documents (list[Document]) – 要添加到向量存储中的文档。

  • kwargs (Any) – 额外的关键字参数。 如果 kwargs 包含 ids 并且 documents 也包含 ids, kwargs 中的 ids 将优先。

Returns:

已添加文本的ID列表。

Raises:

ValueError – 如果id的数量与文档的数量不匹配。

Return type:

列表[字符串]

add_texts(texts: Iterable[str], metadatas: List[dict] | None = None, last_vector: List[float] | None = None, **kwargs: Any) List[str][source]#

通过嵌入运行更多文本并添加到向量存储中。

Parameters:
  • texts (Iterable[str]) – 要添加到向量存储中的字符串的可迭代对象。

  • metadatas (List[dict] | None) – 可选的与文本关联的元数据列表。

  • ids – 与文本关联的可选ID列表。

  • **kwargs (Any) – 向量存储特定参数。 其中一个 kwargs 应该是 ids,这是一个与文本相关联的 ID 列表。

  • last_vector (List[float] | None)

  • **kwargs

Returns:

将文本添加到向量存储中后的ID列表。

Raises:
  • ValueError – 如果元数据的数量与文本的数量不匹配。

  • ValueError – 如果id的数量与文本的数量不匹配。

Return type:

列表[str]

async adelete(ids: list[str] | None = None, **kwargs: Any) bool | None#

通过向量ID或其他条件异步删除。

Parameters:
  • ids (list[str] | None) – 要删除的id列表。如果为None,则删除所有。默认值为None。

  • **kwargs (Any) – 子类可能使用的其他关键字参数。

Returns:

如果删除成功则为真, 否则为假,如果未实现则为无。

Return type:

可选[布尔]

async classmethod afrom_documents(documents: list[Document], embedding: Embeddings, **kwargs: Any) VST#

异步返回从文档和嵌入初始化的VectorStore。

Parameters:
  • documents (list[Document]) – 要添加到向量存储中的文档列表。

  • embedding (Embeddings) – 使用的嵌入函数。

  • kwargs (Any) – 额外的关键字参数。

Returns:

从文档和嵌入初始化的VectorStore。

Return type:

VectorStore

async classmethod afrom_texts(texts: list[str], embedding: Embeddings, metadatas: list[dict] | None = None, *, ids: list[str] | None = None, **kwargs: Any) VST#

异步返回从文本和嵌入初始化的VectorStore。

Parameters:
  • texts (list[str]) – 要添加到向量存储中的文本。

  • embedding (Embeddings) – 使用的嵌入函数。

  • metadatas (list[dict] | None) – 可选的与文本关联的元数据列表。默认值为 None。

  • ids (list[str] | None) – 可选的与文本关联的ID列表。

  • kwargs (Any) – 额外的关键字参数。

Returns:

VectorStore 从文本和嵌入初始化。

Return type:

VectorStore

async aget_by_ids(ids: Sequence[str], /) list[Document]#

通过ID异步获取文档。

返回的文档预计将具有ID字段,该字段设置为向量存储中文档的ID。

如果某些ID未找到或存在重复的ID,返回的文档数量可能少于请求的数量。

用户不应假设返回文档的顺序与输入ID的顺序相匹配。相反,用户应依赖返回文档的ID字段。

如果没有找到某些ID的文档,此方法不应引发异常。

Parameters:

ids (Sequence[str]) – 要检索的ID列表。

Returns:

文档列表。

Return type:

列表[Document]

在版本0.2.11中添加。

异步返回使用最大边际相关性选择的文档。

最大边际相关性优化了与查询的相似性和所选文档之间的多样性。

Parameters:
  • query (str) – 用于查找相似文档的文本。

  • k (int) – 返回的文档数量。默认为4。

  • fetch_k (int) – 要传递给MMR算法的文档数量。 默认值为20。

  • lambda_mult (float) – 介于0和1之间的数字,决定了结果之间的多样性程度,0对应最大多样性,1对应最小多样性。默认值为0.5。

  • kwargs (Any)

Returns:

通过最大边际相关性选择的文档列表。

Return type:

列表[Document]

async amax_marginal_relevance_search_by_vector(embedding: list[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) list[Document]#

异步返回使用最大边际相关性选择的文档。

最大边际相关性优化了与查询的相似性和所选文档之间的多样性。

Parameters:
  • embedding (list[float]) – 用于查找相似文档的嵌入。

  • k (int) – 返回的文档数量。默认为4。

  • fetch_k (int) – 要传递给MMR算法的文档数量。 默认值为20。

  • lambda_mult (float) – 介于0和1之间的数字,决定了结果之间的多样性程度,0对应最大多样性,1对应最小多样性。默认值为0.5。

  • **kwargs (Any) – 传递给搜索方法的参数。

Returns:

通过最大边际相关性选择的文档列表。

Return type:

列表[Document]

as_retriever(**kwargs: Any) VectorStoreRetriever#

返回从此VectorStore初始化的VectorStoreRetriever。

Parameters:

**kwargs (Any) –

传递给搜索函数的关键字参数。 可以包括: search_type (Optional[str]): 定义检索器应执行的搜索类型。 可以是“similarity”(默认)、“mmr”或“similarity_score_threshold”。

检索器应执行的搜索类型。 可以是“similarity”(默认)、“mmr”或“similarity_score_threshold”。

search_kwargs (Optional[Dict]): 传递给搜索函数的关键字参数。
可以包括以下内容:

k: 返回的文档数量(默认:4) score_threshold: 最小相关性阈值

用于similarity_score_threshold

fetch_k: 传递给MMR算法的文档数量

(默认:20)

lambda_mult: MMR返回结果的多样性;

1表示最小多样性,0表示最大多样性。(默认:0.5)

filter: 按文档元数据过滤

Returns:

VectorStore的检索器类。

Return type:

VectorStoreRetriever

示例:

# Retrieve more documents with higher diversity
# Useful if your dataset has many similar documents
docsearch.as_retriever(
    search_type="mmr",
    search_kwargs={'k': 6, 'lambda_mult': 0.25}
)

# Fetch more documents for the MMR algorithm to consider
# But only return the top 5
docsearch.as_retriever(
    search_type="mmr",
    search_kwargs={'k': 5, 'fetch_k': 50}
)

# Only retrieve documents that have a relevance score
# Above a certain threshold
docsearch.as_retriever(
    search_type="similarity_score_threshold",
    search_kwargs={'score_threshold': 0.8}
)

# Only get the single most similar document from the dataset
docsearch.as_retriever(search_kwargs={'k': 1})

# Use a filter to only retrieve documents from a specific paper
docsearch.as_retriever(
    search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}}
)
async asearch(query: str, search_type: str, **kwargs: Any) list[Document]#

异步返回与查询最相似的文档,使用指定的搜索类型。

Parameters:
  • query (str) – 输入文本。

  • search_type (str) – 要执行的搜索类型。可以是“similarity”、“mmr”或“similarity_score_threshold”。

  • **kwargs (Any) – 传递给搜索方法的参数。

Returns:

与查询最相似的文档列表。

Raises:

ValueError – 如果 search_type 不是 “similarity”、“mmr” 或 “similarity_score_threshold” 之一。

Return type:

列表[Document]

异步返回与查询最相似的文档。

Parameters:
  • query (str) – 输入文本。

  • k (int) – 返回的文档数量。默认为4。

  • **kwargs (Any) – 传递给搜索方法的参数。

Returns:

与查询最相似的文档列表。

Return type:

列表[Document]

async asimilarity_search_by_vector(embedding: list[float], k: int = 4, **kwargs: Any) list[Document]#

异步返回与嵌入向量最相似的文档。

Parameters:
  • embedding (list[float]) – 用于查找相似文档的嵌入。

  • k (int) – 返回的文档数量。默认为4。

  • **kwargs (Any) – 传递给搜索方法的参数。

Returns:

与查询向量最相似的文档列表。

Return type:

列表[Document]

async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) list[tuple[Document, float]]#

异步返回文档和相关度分数,范围在[0, 1]之间。

0 表示不相似,1 表示最相似。

Parameters:
  • query (str) – 输入文本。

  • k (int) – 返回的文档数量。默认为4。

  • **kwargs (Any) –

    传递给相似性搜索的kwargs。应包括: score_threshold: 可选,一个介于0到1之间的浮点值

    过滤检索到的文档集

Returns:

(文档,相似度分数)的元组列表

Return type:

列表[元组[Document, 浮点数]]

async asimilarity_search_with_score(*args: Any, **kwargs: Any) list[tuple[Document, float]]#

异步运行带有距离的相似性搜索。

Parameters:
  • *args (Any) – 传递给搜索方法的参数。

  • **kwargs (Any) – 传递给搜索方法的参数。

Returns:

(文档, 相似度分数) 的元组列表。

Return type:

列表[元组[Document, 浮点数]]

cache_clear() Response[source]#

清除向量数据库的缓存 :returns: 包含操作结果的HTTP响应

Return type:

响应

cache_create(config: str = '') Response[source]#

为向量数据库创建缓存 :param config: 缓存的配置。 :type config: str

Returns:

一个包含操作结果的http响应

Parameters:

config (str)

Return type:

响应

cache_delete() Response[source]#

删除向量数据库的缓存 :returns: 包含操作结果的http响应

Return type:

响应

cache_exists() bool[source]#

检查缓存是否存在 :返回: 如果存在则为true

Return type:

布尔

cache_index_clear() Response[source]#

清除向量数据库的索引 :returns: 包含操作结果的http响应

Return type:

响应

cache_index_reindex() Response[来源]#

重建向量数据库 :returns: 包含操作结果的http响应

Return type:

响应

config_clear() None[source]#
Return type:

configure(metadata: dict, dimension: int) None[来源]#
Parameters:
  • metadata (dict)

  • 维度 (整数)

Return type:

delete(ids: list[str] | None = None, **kwargs: Any) bool | None#

根据向量ID或其他条件删除。

Parameters:
  • ids (list[str] | None) – 要删除的id列表。如果为None,则删除所有。默认值为None。

  • **kwargs (Any) – 子类可能使用的其他关键字参数。

Returns:

如果删除成功则为真, 否则为假,如果未实现则为无。

Return type:

可选[布尔]

classmethod from_documents(documents: list[Document], embedding: Embeddings, **kwargs: Any) VST#

返回从文档和嵌入初始化的VectorStore。

Parameters:
  • documents (list[Document]) – 要添加到向量存储中的文档列表。

  • embedding (Embeddings) – 使用的嵌入函数。

  • kwargs (Any) – 额外的关键字参数。

Returns:

从文档和嵌入初始化的VectorStore。

Return type:

VectorStore

classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: List[dict] | None = None, ids: List[str] | None = None, clear_old: bool | None = True, auto_config: bool | None = True, **kwargs: Any) InfinispanVS[source]#

返回从文本和嵌入初始化的VectorStore。

除了超类方法描述的参数外,如果需要与默认配置不同的配置,此实现还提供了其他配置参数。

Parameters:
  • ids (List[str]) – 与嵌入相关的额外键列表。如果未提供,将生成UUID。

  • clear_old (bool) – 是否必须删除旧数据。默认值为 True

  • auto_config (bool) – 是否进行完整的服务器设置(缓存、protobuf定义等)。默认值为True

  • kwargs (Any) – 传递给 InfinispanVS 的其余参数。请参阅文档

  • 文本 (列表[字符串])

  • embedding (Embeddings)

  • metadatas (列表[字典] | )

Return type:

InfinispanVS

get_by_ids(ids: Sequence[str], /) list[Document]#

通过ID获取文档。

返回的文档预计将具有ID字段,该字段设置为向量存储中文档的ID。

如果某些ID未找到或存在重复的ID,返回的文档数量可能少于请求的数量。

用户不应假设返回文档的顺序与输入ID的顺序相匹配。相反,用户应依赖返回文档的ID字段。

如果没有找到某些ID的文档,此方法不应引发异常。

Parameters:

ids (Sequence[str]) – 要检索的ID列表。

Returns:

文档列表。

Return type:

列表[Document]

在版本0.2.11中添加。

返回使用最大边际相关性选择的文档。

最大边际相关性优化了与查询的相似性和所选文档之间的多样性。

Parameters:
  • query (str) – 用于查找相似文档的文本。

  • k (int) – 返回的文档数量。默认为4。

  • fetch_k (int) – 要传递给MMR算法的文档数量。 默认值为20。

  • lambda_mult (float) – 介于0和1之间的数字,决定了结果之间的多样性程度,0对应最大多样性,1对应最小多样性。默认值为0.5。

  • **kwargs (Any) – 传递给搜索方法的参数。

Returns:

通过最大边际相关性选择的文档列表。

Return type:

列表[Document]

max_marginal_relevance_search_by_vector(embedding: list[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) list[Document]#

返回使用最大边际相关性选择的文档。

最大边际相关性优化了与查询的相似性和所选文档之间的多样性。

Parameters:
  • embedding (list[float]) – 用于查找相似文档的嵌入。

  • k (int) – 返回的文档数量。默认为4。

  • fetch_k (int) – 要传递给MMR算法的文档数量。 默认值为20。

  • lambda_mult (float) – 介于0和1之间的数字,决定了结果之间的多样性程度,0对应最大多样性,1对应最小多样性。默认值为0.5。

  • **kwargs (Any) – 传递给搜索方法的参数。

Returns:

通过最大边际相关性选择的文档列表。

Return type:

列表[Document]

schema_builder(templ: dict, dimension: int) str[source]#
Parameters:
  • templ (字典)

  • 维度 (整数)

Return type:

字符串

schema_create(proto: str) Response[source]#

部署向量数据库的模式 :param proto: protobuf模式 :type proto: str

Returns:

一个包含操作结果的http响应

Parameters:

proto (str)

Return type:

响应

schema_delete() Response[source]#

删除向量数据库的模式 :returns: 包含操作结果的http响应

Return type:

响应

search(query: str, search_type: str, **kwargs: Any) list[Document]#

使用指定的搜索类型返回与查询最相似的文档。

Parameters:
  • query (str) – 输入文本

  • search_type (str) – 要执行的搜索类型。可以是“similarity”、“mmr”或“similarity_score_threshold”。

  • **kwargs (Any) – 传递给搜索方法的参数。

Returns:

与查询最相似的文档列表。

Raises:

ValueError – 如果 search_type 不是 “similarity”、“mmr” 或 “similarity_score_threshold” 之一。

Return type:

列表[Document]

返回与查询最相似的文档。

Parameters:
  • query (str)

  • k (整数)

  • kwargs (Any)

Return type:

列表[文档]

similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) List[Document][source]#

返回与嵌入向量最相似的文档。

Parameters:
  • embedding (List[float]) – 用于查找相似文档的嵌入。

  • k (int) – 返回的文档数量。默认为4。

  • **kwargs (Any) – 传递给搜索方法的参数。

Returns:

与查询向量最相似的文档列表。

Return type:

列表[文档]

similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) list[tuple[Document, float]]#

返回文档和相关度分数,范围在[0, 1]之间。

0 表示不相似,1 表示最相似。

Parameters:
  • query (str) – 输入文本。

  • k (int) – 返回的文档数量。默认为4。

  • **kwargs (Any) –

    传递给相似性搜索的kwargs。应包括: score_threshold: 可选,一个介于0到1之间的浮点值

    用于过滤检索到的文档集。

Returns:

(文档, 相似度分数) 的元组列表。

Return type:

列表[元组[Document, 浮点数]]

similarity_search_with_score(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]][来源]#

对查询字符串执行搜索并返回带有分数的结果。

Parameters:
  • query (str) – 被搜索的文本。

  • k (int, optional) – 返回的结果数量。默认为4。

  • kwargs (Any)

Returns:

列表[元组[文档, 浮点数]]

Return type:

列表[元组[文档, 浮点数]]

similarity_search_with_score_by_vector(embedding: List[float], k: int = 4) List[Tuple[Document, float]][source]#

返回与嵌入向量最相似的文档。

Parameters:
  • embedding (List[float]) – 用于查找相似文档的嵌入。

  • k (int) – 返回的文档数量。默认为4。

Returns:

与查询向量最相似的(文档,分数)对列表。

Return type:

列表[元组[文档, 浮点数]]

使用 InfinispanVS 的示例