Vectara查询配置#
- class langchain_community.vectorstores.vectara.VectaraQueryConfig(k: int = 10, lambda_val: float = 0.0, filter: str = '', score_threshold: float | None = None, n_sentence_before: int = 2, n_sentence_after: int = 2, n_sentence_context: int | None = None, mmr_config: MMRConfig | None = None, summary_config: SummaryConfig | None = None, rerank_config: RerankConfig | None = None)[source]#
Vectara查询的配置。
k: 返回的文档数量。默认为10。 lambda_val: 混合搜索的词汇匹配参数。 filter 用于过滤元数据的参数字典。例如 a
过滤器可以是“doc.rating > 3.0 and part.lang = ‘deu’”} 更多详情请参见 https://docs.vectara.com/docs/search-apis/sql/filter-overview 。
- score_threshold: minimal score threshold for the result.
如果定义了,得分低于此值的结果将被过滤掉。
- n_sentence_before: number of sentences before the matching segment
添加,默认为2
- n_sentence_after: number of sentences before the matching segment
要添加,默认为2
rerank_config: RerankConfig 配置数据类 summary_config: SummaryConfig 配置数据类
属性
filter
k
lambda_val
n_sentence_after
n_sentence_before
score_threshold
方法
__init__
([k, lambda_val, filter, ...])- Parameters:
k (整数)
lambda_val (float)
filter (str)
score_threshold (float | None)
n_sentence_before (int)
n_sentence_after (int)
n_sentence_context (可选[整数])
mmr_config (可选[MMRConfig])
summary_config (SummaryConfig)
rerank_config (RerankConfig)
- __init__(k: int = 10, lambda_val: float = 0.0, filter: str = '', score_threshold: float | None = None, n_sentence_before: int = 2, n_sentence_after: int = 2, n_sentence_context: int | None = None, mmr_config: MMRConfig | None = None, summary_config: SummaryConfig | None = None, rerank_config: RerankConfig | None = None)[来源]#
- Parameters:
k (整数)
lambda_val (float)
filter (str)
score_threshold (float | None)
n_sentence_before (int)
n_sentence_after (int)
n_sentence_context (int | None)
mmr_config (MMRConfig | None)
summary_config (SummaryConfig | None)
rerank_config (RerankConfig | None)
使用 VectaraQueryConfig 的示例